scholarly journals Activation of Coronary Arteriolar PKCβ2 Impairs Endothelial NO-Mediated Vasodilation: Role of JNK/Rho Kinase Signaling and Xanthine Oxidase Activation

2021 ◽  
Vol 22 (18) ◽  
pp. 9763
Author(s):  
Naris Thengchaisri ◽  
Travis W. Hein ◽  
Yi Ren ◽  
Lih Kuo

Protein kinase C (PKC) activation can evoke vasoconstriction and contribute to coronary disease. However, it is unclear whether PKC activation, without activating the contractile machinery, can lead to coronary arteriolar dysfunction. The vasoconstriction induced by the PKC activator phorbol 12,13-dibutyrate (PDBu) was examined in isolated porcine coronary arterioles. The PDBu-evoked vasoconstriction was sensitive to a broad-spectrum PKC inhibitor but not affected by inhibiting PKCβ2 or Rho kinase. After exposure of the vessels to a sub-vasomotor concentration of PDBu (1 nmol/L, 60 min), the endothelium-dependent nitric oxide (NO)-mediated dilations in response to serotonin and adenosine were compromised but the dilation induced by the NO donor sodium nitroprusside was unaltered. PDBu elevated superoxide production, which was blocked by the superoxide scavenger Tempol. The impaired NO-mediated vasodilations were reversed by Tempol or inhibition of PKCβ2, xanthine oxidase, c-Jun N-terminal kinase (JNK) and Rho kinase but were not affected by a hydrogen peroxide scavenger or inhibitors of NAD(P)H oxidase and p38 kinase. The PKCβ2 protein was detected in the arteriolar wall and co-localized with endothelial NO synthase. In conclusion, activation of PKCβ2 appears to compromise NO-mediated vasodilation via Rho kinase-mediated JNK signaling and superoxide production from xanthine oxidase, independent of the activation of the smooth muscle contractile machinery.

2005 ◽  
Vol 54 (3) ◽  
pp. 97-105 ◽  
Author(s):  
M. F. Sepulveda ◽  
E. C. Greenaway ◽  
M. Avella ◽  
N. T. Goode ◽  
F. M. Cunningham

Circulation ◽  
2008 ◽  
Vol 118 (suppl_18) ◽  
Author(s):  
Francesca Schinzari ◽  
Manfredi Tesauro ◽  
Valentina Rovella ◽  
Augusto Veneziani ◽  
Nadia Mores ◽  
...  

Impaired insulin-mediated vasodilation in the skeletal muscle may be involved in the development of hypertension in patients with metabolic syndrome (MetS) and contribute to insulin resistance by diminishing the glucose uptake. Rho-kinase, an effector of the small G protein Rho A, plays an important role in hypertension and is reported to interfere with insulin signaling through serine phosphorylation of insulin receptor substrate-1 in blood vessels. We therefore examined the role of Rho-kinase in the pathophysiology of impaired vascular reactivity in patients with MetS by evaluating the effect of Rho-kinase inhibition on NO-dependent vasodilation during hyperinsulinemia. Forearm blood flow (FBF) responses to acetylcholine (ACh), a stimulus for endothelial release of NO, and sodium nitroprusside (SNP), an exogenous NO donor, were assessed during insulin administration (0.1 mU/Kg/min) using the forearm perfusion technique in patients with MetS (n=10) and matched controls (n=10). Patients with MetS were then randomized to intra-arterial infusion of either fasudil (inhibitor of Rho-kinase, 200 μg/min) or placebo and reactivity to ACh and SNP was reassessed. During hyperinsulinemia, vasodilator responses to both ACh and SNP were blunted in patients with MetS (both P>0.001 vs. controls). In patients who received fasudil, its administration did not change unstimulated FBF (P=0.75 vs. insulin alone); the vasodilator response to ACh, however, was significantly enhanced by fasudil (P=0.009 vs. insulin alone), while the response to SNP was not significantly changed (P=0.56). In patients with MetS who received placebo, vascular reactivity to both ACh and SNP was not different than before (both P>0.05). In conclusion, Rho-kinase inhibition during hyperinsulinemia improves endothelium-dependent vasodilator responsiveness in patients with MetS. This suggests that, under those conditions, intravascular activation of Rho-kinase is involved in the pathophysiology of endothelial dysfunction and may constitute a critical mediator linking metabolic and hemodynamic abnormalities in insulin resistance. As a consequence, targeting Rho-kinase might beneficially impact both vascular function and insulin sensitivity in patients with MetS.


1993 ◽  
Vol 264 (1) ◽  
pp. C71-C79 ◽  
Author(s):  
R. V. Sharma ◽  
R. C. Bhalla

This study examines the role of protein kinase C (PKC) in platelet-derived growth factor (PDGF)-induced vascular smooth muscle (VSM) cell proliferation and initial signaling events. A 24-h pretreatment of VSM cells with 200 nM phorbol 12-myristate 13-acetate (PMA) completely abolished immunologically reactive PKC activity. Depletion of PKC activity from VSM cells did not attenuate PDGF-stimulated [3H]thymidine incorporation compared with control cells. Similarly, acute activation of PKC by treatment with 200 nM PMA for 10 min had no effect on PDGF-mediated [3H]thymidine incorporation. Both PMA and PDGF increased c-fos induction to the same magnitude; however, treatment with PMA did not induce DNA synthesis in these cells. In PKC-depleted cells PDGF-mediated c-fos induction was reduced by 50-60%, while DNA synthesis in response to PDGF stimulation was not reduced. PKC depletion did not alter PDGF-stimulated increase in cytosolic calcium levels, 125I-PDGF binding, or receptor autophosphorylation. On the basis of these results, we conclude that PKC activation and c-fos induction do not play a significant role in PDGF-mediated mitogenesis in VSM cells.


2000 ◽  
Vol 278 (4) ◽  
pp. H1211-H1217 ◽  
Author(s):  
Roby D. Rakhit ◽  
Richard J. Edwards ◽  
James W. Mockridge ◽  
Anwar R. Baydoun ◽  
Amanda W. Wyatt ◽  
...  

The aim of this study was to investigate the role of nitric oxide (NO) in a cellular model of early preconditioning (PC) in cultured neonatal rat ventricular myocytes. Cardiomyocytes “preconditioned” with 90 min of stimulated ischemia (SI) followed by 30 min reoxygenation in normal culture conditions were protected against subsequent 6 h of SI. PC was blocked by N G-monomethyl-l-arginine monoacetate but not by dexamethasone pretreatment. Inducible nitric oxide synthase (NOS) protein expression was not detected during PC ischemia. Pretreatment (90 min) with the NO donor S-nitroso- N-acetyl-l,l-penicillamine (SNAP) mimicked PC, resulting in significant protection. SNAP-triggered protection was completely abolished by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) but was unaffected by chelerythrine or the presence of glibenclamide and 5-hydroxydecanoate. With the use of RIA, SNAP treatment increased cGMP levels, which were blocked by ODQ. Hence, NO is implicated as a trigger in this model of early PC via activation of a constitutive NOS isoform. After exposure to SNAP, the mechanism of cardioprotection is cGMP dependent but independent of protein kinase C or ATP-sensitive K+ channels. This differs from the proposed mechanism of NO-induced cardioprotection in late PC.


1983 ◽  
Vol 245 (1) ◽  
pp. H139-H142 ◽  
Author(s):  
W. I. Rosenblum

Mouse pial arterioles were exposed to the free radical-generating reactants acetaldehyde and xanthine oxidase. Concentrations of 0.5 mM acetaldehyde and 0.1 U/ml xanthine oxidase caused reversible dilations, whereas higher concentrations produced initial constrictions followed by reversible dilations. The following free radical scavengers inhibited the dilation when added to the lower concentrations of reactants: superoxide dismutase, a superoxide scavenger; catalase, an H2O2 scavenger; and mannitol, a hydroxyl scavenger. In addition, pretreatment of the animal with dimethyl sulfoxide, a hydroxyl scavenger, also inhibited the response. The scavengers were also tested against either the dilation produced by increased inspired CO2 or against the dilation produced by local application of 10(-3) M papaverine. No significant effect was observed. The data support the hypothesis that hydroxyl radicals can dilate pial arterioles, since all the scavengers can ultimately reduce levels of hydroxyl generated by acetaldehyde plus xanthine oxidase.


1995 ◽  
Vol 269 (5) ◽  
pp. G789-G799 ◽  
Author(s):  
A. D. Burgstahler ◽  
M. H. Nathanson

Nitric oxide (NO) induces smooth muscle relaxation. We examined whether NO or its mediator of this action, guanosine 3',5'-cyclic monophosphate (cGMP), similarly induces relaxation of the apicolateral cytoskeleton in hepatocytes. Apical (canalicular) contractions were observed in isolated rat hepatocyte couplets by videomicroscopy, tight junction permeability was determined in the couplets by paracellular penetration of Texas red-dextran, and cytosolic Ca2+ (Ca2+i) was measured in isolated hepatocytes by fluorescence imaging. Unexpectedly, the NO donor sodium nitroprusside potentiated rather than inhibited apical contraction, in a cGMP-independent manner. This action of nitroprusside was blocked by hemoglobin or by inhibition of protein kinase C (PKC). Nitroprusside and 3-morpholinosydnonimine, another NO donor, each increased the permeability of hepatocyte tight junctions, a known effect of PKC in this cell type, and induced translocation of that kinase to the plasma membrane, as determined by immunocytochemistry. Neither nitroprusside nor dibutyryl cGMP changed the amplitude or frequency of Ca2+i signals in hepatocytes. Exogenous NO thus modulates the apicolateral cytoskeleton of hepatocytes via PKC activation rather than via cGMP or Ca2+i. These observations suggest a new role for NO: to activate PKC.


2017 ◽  
Vol 313 (2) ◽  
pp. F370-F377
Author(s):  
Young Jae Im ◽  
Jung Keun Lee ◽  
Sun Hee Lee ◽  
Seung-June Oh ◽  
Kwanjin Park

This study was performed to analyze the developmental changes in bladder response to cholinergic stimulation in detail, highlighting calcium sensitization (CS) and its related pathways. Rats were divided into three groups in accordance with reported time of developmental milestones (newborns, days 1–4; youngsters, days 5–14; and grown-ups, days 15–28). Following cholinergic stimulation (carbachol, 5 µM), the contractile response to detrusor was analyzed with respect to three phases (initial phasic, tonic, and superimposed phasic contractions). Contractile responses were analyzed by their dynamic and kinetic aspects. The responses were further compared in varying external calcium concentrations and in the presence of inhibitors of protein kinase C (PKC) and Rho kinase (ROCK), which are involved in CS. The responses of newborns contrasted with the others by their short and brisk initial phasic contractions, prominent tonic contractions, and delayed participation of irregular superimposed phasic contractions. With development, phasic contractions became prominent, and tonic contractions diminished. These developmental changes in phasic contractions were reproduced when exposed to increasing calcium concentrations. Application of specific inhibitors and molecular phasic analysis revealed that PKC was functional in tonic contractions of the newborns, whereas ROCK took over its role with development. Within a few days of birth, rats’ bladders experienced drastic changes in contractile mechanisms. This included dominance of phasic contractions over tonic contractions due to increased calcium dependence and the maturational shift of the calcium sensitivity mechanism from PKC to ROCK.


2002 ◽  
Vol 283 (2) ◽  
pp. C489-C499 ◽  
Author(s):  
Tam Luan Le ◽  
Shannon R. Joseph ◽  
Alpha S. Yap ◽  
Jennifer L. Stow

E-cadherin is a major component of adherens junctions in epithelial cells. We showed previously that a pool of cell surface E-cadherin is constitutively internalized and recycled back to the surface. In the present study, we investigated the potential role of protein kinase C (PKC) in regulating the trafficking of surface E-cadherin in Madin-Darby canine kidney cells. Using surface biotinylation and immunofluorescence, we found that treatment of cells with phorbol esters increased the rate of endocytosis of E-cadherin, resulting in accumulation of E-cadherin in apically localized early or recycling endosomes. The recycling of E-cadherin back to the surface was also decreased in the presence of phorbol esters. Phorbol ester-induced endocytosis of E-cadherin was blocked by specific inhibitors, implicating novel PKC isozymes, such as PKC-ε in this pathway. PKC activation led to changes in the actin cytoskeleton facilitating E-cadherin endocytosis. Depolymerization of actin increased endocytosis of E-cadherin, whereas the PKC-induced uptake of E-cadherin was blocked by the actin stabilizer jasplakinolide. Our findings show that PKC regulates vital steps of E-cadherin trafficking, its endocytosis, and its recycling.


Sign in / Sign up

Export Citation Format

Share Document