scholarly journals Macrophage-Dependent Interleukin-6-Production and Inhibition of IK Contributes to Acquired QT Prolongation in Lipotoxic Guinea Pig Heart

2021 ◽  
Vol 22 (20) ◽  
pp. 11249
Author(s):  
Md. Kamrul Hasan Chowdhury ◽  
Laura Martinez-Mateu ◽  
Jenny Do ◽  
Kelly A. Aromolaran ◽  
Javier Saiz ◽  
...  

In the heart, the delayed rectifier K current, IK, composed of the rapid (IKr) and slow (IKs) components contributes prominently to normal cardiac repolarization. In lipotoxicity, chronic elevation of pro-inflammatory cytokines may remodel IK, elevating the risk for ventricular arrythmias and sudden cardiac death. We investigated whether and how the pro-inflammatory interleukin-6 altered IK in the heart, using electrophysiology to evaluate changes in IK in adult guinea pig ventricular myocytes. We found that palmitic acid (a potent inducer of lipotoxicity), induced a rapid (~24 h) and significant increase in IL-6 in RAW264.7 cells. PA-diet fed guinea pigs displayed a severely prolonged QT interval when compared to low-fat diet fed controls. Exposure to isoproterenol induced torsade de pointes, and ventricular fibrillation in lipotoxic guinea pigs. Pre-exposure to IL-6 with the soluble IL-6 receptor produced a profound depression of IKr and IKs densities, prolonged action potential duration, and impaired mitochondrial ATP production. Only with the inhibition of IKr did a proarrhythmic phenotype of IKs depression emerge, manifested as a further prolongation of action potential duration and QT interval. Our data offer unique mechanistic insights with implications for pathological QT interval in patients and vulnerability to fatal arrhythmias.

2013 ◽  
Vol 91 (8) ◽  
pp. 586-592 ◽  
Author(s):  
Claudia Corici ◽  
Zsófia Kohajda ◽  
Attila Kristóf ◽  
András Horváth ◽  
László Virág ◽  
...  

Activators of the slow delayed rectifier K+ current (IKs) have been suggested as promising tools for suppressing ventricular arrhythmias due to prolongation of repolarization. Recently, L-364,373 (R-L3) was nominated to activate IKs in myocytes from several species; however, in some studies, it failed to activate IKs. One later study suggested opposite modulating effects from the R-L3 enantiomers as a possible explanation for this discrepancy. Therefore, we analyzed the effect of the RL-3 enantiomers on IKs in ventricular mammalian myocytes, by applying standard microelectrode and whole-cell patch-clamp techniques at 37 °C. We synthesized 2 substances, ZS_1270B (right) and ZS_1271B (left), the 2 enantiomers of R-L3. In rabbit myocytes, ZS_1270B enhanced the IKs tail current by approximately 30%, whereas ZS_1271B reduced IKs tails by 45%. In guinea pig right ventricular preparations, ZS_1270B shortened APD90 (action potential duration measured at 90% repolarization) by 12%, whereas ZS_1271B lengthened it by approximately 15%. We concluded that R-L3 enantiomers in the same concentration range indeed have opposite modulating effects on IKs, which may explain why the racemic drug R-L3 previously failed to activate IKs. ZS_1270B is a potent IKs activator, therefore, this substance is appropriate to test whether IKs activators are ideal tools to suppress ventricular arrhythmias originating from prolongation of action potentials.


2018 ◽  
Vol 125 (4) ◽  
pp. 1329-1338
Author(s):  
Yejia Song ◽  
Luiz Belardinelli

Aging hearts have prolonged QT interval and are vulnerable to oxidative stress. Because the QT interval indirectly reflects the action potential duration (APD), we examined the hypotheses that 1) the APD of ventricular myocytes increases with age; 2) the age-related prolongation of APD is due to an enhancement of basal late Na+ current ( INaL); and 3) inhibition of INaL may protect aging hearts from arrhythmogenic effects of hydrogen peroxide (H2O2). Experiments were performed on ventricular myocytes isolated from (young) 1-mo- and (old) 1-yr-old guinea pigs (GPs). The APD of myocytes from old GPs was significantly longer than that from young GPs and was shortened by the INaL inhibitors GS967 and tetrodotoxin. The magnitude of INaL was significantly larger in myocytes from old than from young GPs. The CaMKII inhibitors KN-93 and AIP and the NaV1.5-channel blocker methanethiosulfonate ethylammonium blocked the INaL. There were no significant differences between myocytes from young and old GPs in L-type Ca2+ current and the rapidly and slowly activating delayed rectifier K+ currents, although the inward rectifier K+ current was slightly decreased in myocytes from old GPs. H2O2 induced more early afterdepolarizations in myocytes from old than from young GPs. The effect of H2O2 was attenuated by GS967. The results suggest that 1) the APD of myocytes from old GPs is prolonged, 2) a CaMKII-mediated increase in NaV1.5-channel INaL is responsible for the prolongation of APD, and 3) inhibition of INaL may be beneficial for maintaining electrical stability under oxidative stress in myocytes of old GPs. NEW & NOTEWORTHY The action potential duration is significantly longer in ventricular myocytes from old than from young guinea pigs, which may explain, at the cellular level, the increase in QT interval with age. A CaMKII-mediated enhancement of NaV1.5-channel late current is responsible for the age-related prolongation of action potential duration. The enhanced basal late sodium current may predispose cardiac myocytes of old animals to oxidative stress and arrhythmogenesis.


2014 ◽  
Vol 15 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Yuhui Zhao ◽  
Haixia Huang ◽  
Yunhui Du ◽  
Xiao Li ◽  
Tingting Lv ◽  
...  

1995 ◽  
Vol 268 (6) ◽  
pp. H2321-H2328 ◽  
Author(s):  
S. Zhang ◽  
T. Sawanobori ◽  
H. Adaniya ◽  
Y. Hirano ◽  
M. Hiraoka

Effects of extracellular magnesium (Mg2+) on action potential duration (APD) and underlying membrane currents in guinea pig ventricular myocytes were studied by using the whole cell patch-clamp method. Increasing external Mg2+ concentration [Mg2+]o) from 0.5 to 3 mM produced a prolongation of APD at 90% repolarization (APD90), whereas 5 and 10 mM Mg2+ shortened it. [Mg2+]o, at 3 mM or higher, suppressed the delayed outward K+ current and the inward rectifier K+ current. Increases in [Mg2+]o depressed the peak amplitude and delayed the decay time course of the Ca2+ current (ICa), the latter effect is probably due to the decrease in Ca(2+)-induced inactivation. Thus 3 mM Mg2+ suppressed the peak ICa but increased the late ICa amplitude at the end of a 200-ms depolarization pulse, whereas 10 mM Mg2+ suppressed both components. Application of 10 mM Mg2+ shifted the voltage-dependent activation and inactivation by approximately 10 mV to more positive voltage due to screening the membrane surface charges. Application of manganese (1-5 mM) also caused dual effects on APD90, similar to those of Mg2+, and suppressed the peak ICa with slowed decay. These results suggest that the dual effects of Mg2+ on APD in guinea pig ventricular myocytes can be, at least in part, explained by its action on ICa with slowed decay time course in addition to suppressive effects on K+ currents.


1996 ◽  
Vol 166 (2) ◽  
pp. 150-155 ◽  
Author(s):  
P. Szigligeti ◽  
C. Pankucsi ◽  
T. B�ny�sz ◽  
A. Varr� ◽  
P. P. N�n�si

Sign in / Sign up

Export Citation Format

Share Document