scholarly journals Free Radical Generation in Far-UV Synchrotron Radiation Circular Dichroism Assays—Protein and Buffer Composition Contribution

2021 ◽  
Vol 22 (21) ◽  
pp. 11325
Author(s):  
Paolo Ruzza ◽  
Claudia Honisch ◽  
Rohanah Hussain ◽  
Giuliano Siligardi

A useful tool to analyze the ligands and/or environmental contribution to protein stability is represented by the Synchrotron Radiation Circular Dichroism UV-denaturation assay that consists in the acquisition of several consecutive repeated far-UV SRCD spectra. Recently we demonstrated that the prevailing mechanism of this denaturation involves the generation of free radicals and reactive oxygen species (ROS). In this work, we analyzed the effect of buffering agents commonly used in spectroscopic measurements, including MOPS (3-(N-morpholino) propanesulfonic acid), HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), TRIS-HCl (tris-hydroxymethil aminomethane hydrochloride), and phosphate, on the efficiency of protein denaturation caused by exposure to UV radiation. Fluorescence experiments confirmed the presence of ROS and were used to determine the rate of ROS generation. Our results indicate that the efficiency of the denaturation process is strongly influenced by the buffer composition with MOPS and HEPES acting also as scavengers and that the presence of proteins itself influenced the ROS formation rate.

2008 ◽  
Vol 15 (4) ◽  
pp. 420-422 ◽  
Author(s):  
A. J. Miles ◽  
Robert W. Janes ◽  
A. Brown ◽  
D. T. Clarke ◽  
J. C. Sutherland ◽  
...  

2019 ◽  
Vol 26 (7) ◽  
pp. 532-541 ◽  
Author(s):  
Cadena-Cadena Francisco ◽  
Cárdenas-López José Luis ◽  
Ezquerra-Brauer Josafat Marina ◽  
Cinco-Moroyoqui Francisco Javier ◽  
López-Zavala Alonso Alexis ◽  
...  

Background: Cathepsin D is a lysosomal enzyme that is found in all organisms acting in protein turnover, in humans it is present in some types of carcinomas, and it has a high activity in Parkinson's disease and a low activity in Alzheimer disease. In marine organisms, most of the research has been limited to corroborate the presence of this enzyme. It is known that cathepsin D of some marine organisms has a low thermostability and that it has the ability to have activity at very acidic pH. Cathepsin D of the Jumbo squid (Dosidicus gigas) hepatopancreas was purified and partially characterized. The secondary structure of these enzymes is highly conserved so the role of temperature and pH in the secondary structure and in protein denaturation is of great importance in the study of enzymes. The secondary structure of cathepsin D from jumbo squid hepatopancreas was determined by means of circular dichroism spectroscopy. Objective: In this article, our purpose was to determine the secondary structure of the enzyme and how it is affected by subjecting it to different temperature and pH conditions. Methods: Circular dichroism technique was used to measure the modifications of the secondary structure of cathepsin D when subjected to different treatments. The methodology consisted in dissecting the hepatopancreas of squid and freeze drying it. Then a crude extract was prepared by mixing 1: 1 hepatopancreas with assay buffer, the purification was in two steps; the first step consisted of using an ultrafiltration membrane with a molecular cut of 50 kDa, and the second step, a pepstatin agarose resin was used to purification the enzyme. Once the enzyme was purified, the purity was corroborated with SDS PAGE electrophoresis, isoelectric point and zymogram. Circular dichroism is carried out by placing the sample with a concentration of 0.125 mg / mL in a 3 mL quartz cell. The results were obtained in mdeg (millidegrees) and transformed to mean ellipticity per residue, using 111 g/mol molecular weight/residue as average. Secondary-structure estimation from the far-UV CD spectra was calculated using K2D Dichroweb software. Results: It was found that α helix decreases at temperatures above 50 °C and above pH 4. Heating the enzyme above 70°C maintains a low percentage of α helix and increases β sheet. Far-UV CD measurements of cathepsin D showed irreversible thermal denaturation. The process was strongly dependent on the heating rate, accompanied by a process of oligomerization of the protein that appears when the sample is heated, and maintained a certain time at this temperature. An amount typically between 3 and 4% α helix of their secondary structure remains unchanged. It is consistent with an unfolding process kinetically controlled due to the presence of an irreversible reaction. The secondary structure depends on pH, and a pH above 4 causes α helix structures to be modified. Conclusion: In conclusion, cathepsin D from jumbo squid hepatopancreas showed retaining up to 4% α helix at 80°C. The thermal denaturation of cathepsin D at pH 3.5 is under kinetic control and follows an irreversible model.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 998
Author(s):  
Laetitia Théron ◽  
Aline Bonifacie ◽  
Jérémy Delabre ◽  
Thierry Sayd ◽  
Laurent Aubry ◽  
...  

Food processing affects the structure and chemical state of proteins. In particular, protein oxidation occurs and may impair protein properties. These chemical reactions initiated during processing can develop during digestion. Indeed, the physicochemical conditions of the stomach (oxygen pressure, low pH) favor oxidation. In that respect, digestive proteases may be affected as well. Yet, very little is known about the link between endogenous oxidation of digestive enzymes, their potential denaturation, and, therefore, food protein digestibility. Thus, the objective of this study is to understand how oxidative chemical processes will impact the pepsin secondary structure and its hydrolytic activity. The folding and unfolding kinetics of pepsin under oxidative conditions was determined using Synchrotron Radiation Circular Dichroism. SRCD gave us the possibility to monitor the rapid kinetics of protein folding and unfolding in real-time, giving highly resolved spectral data. The proteolytic activity of control and oxidized pepsin was investigated by MALDI-TOF mass spectrometry on a meat protein model, the creatine kinase. MALDI-TOF MS allowed a rapid evaluation of the proteolytic activity through peptide fingerprint. This study opens up new perspectives by shifting the digestion paradigm taking into account the gastric digestive enzyme and its substrate.


Biomolecules ◽  
2015 ◽  
Vol 5 (2) ◽  
pp. 724-734 ◽  
Author(s):  
Paolo Ruzza ◽  
Rohanah Hussain ◽  
Barbara Biondi ◽  
Andrea Calderan ◽  
Isabella Tessari ◽  
...  

Author(s):  
Rohanah Hussain ◽  
Tamás Jávorfi ◽  
Charlotte S. Hughes ◽  
Giuliano Siligardi

Sign in / Sign up

Export Citation Format

Share Document