scholarly journals Molecular Determinants and Specificity of mRNA with Alternatively-Spliced UPF1 Isoforms, Influenced by an Insertion in the ‘Regulatory Loop’

2021 ◽  
Vol 22 (23) ◽  
pp. 12744
Author(s):  
Monikaben Padariya ◽  
Robin Fahraeus ◽  
Ted Hupp ◽  
Umesh Kalathiya

The nonsense-mediated mRNA decay (NMD) pathway rapidly detects and degrades mRNA containing premature termination codons (PTCs). UP-frameshift 1 (UPF1), the master regulator of the NMD process, has two alternatively-spliced isoforms; one carries 353-GNEDLVIIWLR-363 insertion in the ‘regulatory loop (involved in mRNA binding)’. Such insertion can induce catalytic and/or ATPase activity, as determined experimentally; however, the kinetics and molecular level information are not fully understood. Herein, applying all-atom molecular dynamics, we probe the binding specificity of UPF1 with different GC- and AU-rich mRNA motifs and the influence of insertion to the viable control over UPF1 catalytic activity. Our results indicate two distinct conformations between 1B and RecA2 domains of UPF1: ‘open (isoform_2; without insertion)’ and ‘closed (isoform_1; with insertion)’. These structural movements correspond to an important stacking pattern in mRNA motifs, i.e., absence of stack formation in mRNA, with UPF1 isoform_2 results in the ‘open conformation’. Particularly, for UPF1 isoform_1, the increased distance between 1B and RecA2 domains has resulted in reducing the mRNA–UPF1 interactions. Lower fluctuating GC-rich mRNA motifs have better binding with UPF1, compared with AU-rich sequences. Except CCUGGGG, all other GC-rich motifs formed a 4-stack pattern with UPF1. High occupancy R363, D364, T627, and G862 residues were common binding GC-rich motifs, as were R363, N535, and T627 for the AU-rich motifs. The GC-rich motifs behave distinctly when bound to either of the isoforms; lower stability was observed with UPF1 isoform_2. The cancer-associated UPF1 variants (P533L/T and A839T) resulted in decreased protein–mRNA binding efficiency. Lack of mRNA stacking poses in the UPF1P533T system significantly decreased UPF1-mRNA binding efficiency and increased distance between 1B-RecA2. These novel findings can serve to further inform NMD-associated mechanistic and kinetic studies.

2008 ◽  
Vol 28 (13) ◽  
pp. 4320-4330 ◽  
Author(s):  
Arneet L. Saltzman ◽  
Yoon Ki Kim ◽  
Qun Pan ◽  
Matthew M. Fagnani ◽  
Lynne E. Maquat ◽  
...  

ABSTRACT Alternative splicing (AS) can regulate gene expression by introducing premature termination codons (PTCs) into spliced mRNA that subsequently elicit transcript degradation by the nonsense-mediated mRNA decay (NMD) pathway. However, the range of cellular functions controlled by this process and the factors required are poorly understood. By quantitative AS microarray profiling, we find that there are significant overlaps among the sets of PTC-introducing AS events affected by individual knockdown of the three core human NMD factors, Up-Frameshift 1 (UPF1), UPF2, and UPF3X/B. However, the levels of some PTC-containing splice variants are less or not detectably affected by the knockdown of UPF2 and/or UPF3X, compared with the knockdown of UPF1. The intron sequences flanking the affected alternative exons are often highly conserved, suggesting important regulatory roles for these AS events. The corresponding genes represent diverse cellular functions, and surprisingly, many encode core spliceosomal proteins and assembly factors. We further show that conserved, PTC-introducing AS events are enriched in genes that encode core spliceosomal proteins. Where tested, altering the expression levels of these core spliceosomal components affects the regulation of PTC-containing splice variants from the corresponding genes. Together, our results show that AS-coupled NMD can have different UPF factor requirements and is likely to regulate many general components of the spliceosome. The results further implicate general spliceosomal components in AS regulation.


2007 ◽  
Vol 27 (16) ◽  
pp. 5630-5638 ◽  
Author(s):  
Lisa Johns ◽  
Andrew Grimson ◽  
Sherry L. Kuchma ◽  
Carrie Loushin Newman ◽  
Philip Anderson

ABSTRACT Eukaryotic mRNAs containing premature translation termination codons (PTCs) are rapidly degraded by a process termed “nonsense-mediated mRNA decay” (NMD). We examined protein-protein and protein-RNA interactions among Caenorhabditis elegans proteins required for NMD. SMG-2, SMG-3, and SMG-4 are orthologs of yeast (Saccharomyces cerevisiae) and mammalian Upf1, Upf2, and Upf3, respectively. A combination of immunoprecipitation and yeast two-hybrid experiments indicated that SMG-2 interacts with SMG-3, SMG-3 interacts with SMG-4, and SMG-2 interacts indirectly with SMG-4 via shared interactions with SMG-3. Such interactions are similar to those observed in yeast and mammalian cells. SMG-2-SMG-3-SMG-4 interactions require neither SMG-2 phosphorylation, which is abolished in smg-1 mutants, nor SMG-2 dephosphorylation, which is reduced or eliminated in smg-5 mutants. SMG-2 preferentially associates with PTC-containing mRNAs. We monitored the association of SMG-2, SMG-3, and SMG-4 with mRNAs of five endogenous genes whose mRNAs are alternatively spliced to either contain or not contain PTCs. SMG-2 associates with both PTC-free and PTC-containing mRNPs, but it strongly and preferentially associates with (“marks”) those containing PTCs. SMG-2 marking of PTC-mRNPs is enhanced by SMG-3 and SMG-4, but SMG-3 and SMG-4 are not detectably associated with the same mRNPs. Neither SMG-2 phosphorylation nor dephosphorylation is required for selective association of SMG-2 with PTC-containing mRNPs, indicating that SMG-2 is phosphorylated only after premature terminations have been discriminated from normal terminations. We discuss these observations with regard to the functions of SMG-2 and its phosphorylation during NMD.


2009 ◽  
Vol 2009 ◽  
pp. 1-9 ◽  
Author(s):  
Lucia Micale ◽  
Lucia Anna Muscarella ◽  
Marco Marzulli ◽  
Bartolomeo Augello ◽  
Patrizia Tritto ◽  
...  

There are many well-studied examples of human phenotypes resulting from nonsense or frameshift mutations that are modulated by Nonsense-Mediated mRNA Decay (NMD), a process that typically degrades transcripts containing premature termination codons (PTCs) in order to prevent translation of unnecessary or aberrant transcripts. Different types of germline mutations in theVHLgene cause the von Hippel-Lindau disease, a dominantly inherited familial cancer syndrome with a marked phenotypic variability and age-dependent penetrance. By generating theDrosophilaUAS:Upf1D45Bline we showed the possible involvement of NMD mechanism in the modulation of the c.172delG frameshift mutation located in the exon 1 ofVhlgene. Further, by Quantitative Real-time PCR (QPCR) we demonstrated that the corresponding c.163delG human mutation is targeted by NMD in human HEK 293 cells. The UAS:Upf1D45Bline represents a useful system to identify novel substrates of NMD pathway inDrosophila melanogaster. Finally, we suggest the possible role of NMD on the regulation ofVHLmutations.


Author(s):  
Jean-Marie Lambert ◽  
Mohamad Omar Ashi ◽  
Nivine Srour ◽  
Laurent Delpy ◽  
Jérôme Saulière

The presence of premature termination codons (PTCs) in transcripts is dangerous for the cell as they encode potentially deleterious truncated proteins that can act with dominant-negative or gain-of-function effects. To avoid synthesis of these shortened polypeptides, several RNA surveillance systems can be activated to decrease the level of PTC-containing mRNAs. Nonsense-mediated mRNA decay (NMD) ensures an accelerated degradation of mRNAs harboring PTCs by using several key NMD factors such as up-frameshift (UPF) proteins. Another pathway called nonsense-associated altered splicing (NAS) upregulates transcripts that have skipped disturbing PTCs by alternative splicing. Therefore, these RNA quality control processes eliminate abnormal PTC-containing mRNAs from the cells by using positive and negative responses. In this review, we will describe the general mechanisms of NMD and NAS and their respective involvement in the decay of aberrant immunoglobulin and TCR transcripts in lymphoid cells.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Claire Guissart ◽  
Kevin Mouzat ◽  
Jovana Kantar ◽  
Baptiste Louveau ◽  
Paul Vilquin ◽  
...  

AbstractAmyotrophic lateral sclerosis (ALS) is the most common and severe adult-onset motoneuron disease and has currently no effective therapy. Approximately 20% of familial ALS cases are caused by dominantly-inherited mutations in the gene encoding Cu/Zn superoxide dismutase (SOD1), which represents one of the most frequent genetic cause of ALS. Despite the overwhelming majority of ALS-causing missense mutations in SOD1, a minority of premature termination codons (PTCs) have been identified. mRNA harboring PTCs are known to be rapidly degraded by nonsense-mediated mRNA decay (NMD), which limits the production of truncated proteins. The rules of NMD surveillance varying with PTC location in mRNA, we analyzed the localization of PTCs in SOD1 mRNA to evaluate whether or not those PTCs can be triggered to degradation by the NMD pathway. Our study shows that all pathogenic PTCs described in SOD1 so far can theoretically escape the NMD, resulting in the production of truncated protein. This finding supports the hypothesis that haploinsufficiency is not an underlying mechanism of SOD1 mutant-associated ALS and suggests that PTCs found in the regions that trigger NMD are not pathogenic. Such a consideration is particularly important since the availability of SOD1 antisense strategies, in view of variant treatment assignment.


2020 ◽  
Vol 21 (4) ◽  
pp. 1335 ◽  
Author(s):  
Jean-Marie Lambert ◽  
Mohamad Omar Ashi ◽  
Nivine Srour ◽  
Laurent Delpy ◽  
Jérôme Saulière

The presence of premature termination codons (PTCs) in transcripts is dangerous for the cell as they encode potentially deleterious truncated proteins that can act with dominant-negative or gain-of-function effects. To avoid the synthesis of these shortened polypeptides, several RNA surveillance systems can be activated to decrease the level of PTC-containing mRNAs. Nonsense-mediated mRNA decay (NMD) ensures an accelerated degradation of mRNAs harboring PTCs by using several key NMD factors such as up-frameshift (UPF) proteins. Another pathway called nonsense-associated altered splicing (NAS) upregulates transcripts that have skipped disturbing PTCs by alternative splicing. Thus, these RNA quality control processes eliminate abnormal PTC-containing mRNAs from the cells by using positive and negative responses. In this review, we describe the general mechanisms of NMD and NAS and their respective involvement in the decay of aberrant immunoglobulin and TCR transcripts in lymphocytes.


Sign in / Sign up

Export Citation Format

Share Document