scholarly journals IL-25 Induced ROS-Mediated M2 Macrophage Polarization via AMPK-Associated Mitophagy

2021 ◽  
Vol 23 (1) ◽  
pp. 3
Author(s):  
Mei-Lan Tsai ◽  
Yi-Giien Tsai ◽  
Yu-Chih Lin ◽  
Ya-Ling Hsu ◽  
Yi-Ting Chen ◽  
...  

Interleukin (IL)-25 is a cytokine released by airway epithelial cells responding to pathogens. Excessive production of reactive oxygen species (ROS) leads to airway inflammation and remodeling in asthma. Mitochondria are the major source of ROS. After stress, defective mitochondria often undergo selective degradation, known as mitophagy. In this study, we examined the effects of IL-25 on ROS production and mitophagy and investigated the underlying mechanisms. The human monocyte cell line was pretreated with IL-25 at different time points. ROS production was measured by flow cytometry. The involvement of mitochondrial activity in the effects of IL-25 on ROS production and subsequent mitophagy was evaluated by enzyme-linked immunosorbent assay, Western blotting, and confocal microscopy. IL-25 stimulation alone induced ROS production and was suppressed by N-acetylcysteine, vitamin C, antimycin A, and MitoTEMPO. The activity of mitochondrial complex I and complex II/III and the levels of p-AMPK and the mitophagy-related proteins were increased by IL-25 stimulation. The CCL-22 secretion was increased by IL-25 stimulation and suppressed by mitophagy inhibitor treatment and PINK1 knockdown. The Th2-like cytokine IL-25 can induce ROS production, increase mitochondrial respiratory chain complex activity, subsequently activate AMPK, and induce mitophagy to stimulate M2 macrophage polarization in monocytes.

Author(s):  
Yuting Tang ◽  
Xiaofang Lin ◽  
Cheng Chen ◽  
Zhongyi Tong ◽  
Hui Sun ◽  
...  

Background: Nucleolin has multiple functions within cell survival and proliferation pathways. Our previous studies have revealed that nucleolin can significantly reduce myocardial ischemia-reperfusion injury by promoting myocardial angiogenesis and reducing myocardial apoptosis. In this study, we attempted to determine the role of nucleolin in myocardial infarction (MI) injury recovery and the underlying mechanism. Methods: Male BALB/c mice aged 6–8 weeks were used to set up MI models by ligating the left anterior descending coronary artery. Nucleolin expression in the heart was downregulated by intramyocardial injection of a lentiviral vector expressing nucleolin-specific small interfering RNA. Macrophage infiltration and polarization were measured by real-time polymerase chain reaction, flow cytometry, and immunofluorescence. Cytokines were detected by enzyme-linked immunosorbent assay. Results: Nucleolin expression in myocardium after MI induction decreased a lot at early phase and elevated at late phase. Nucleolin knockdown impaired heart systolic and diastolic functions and decreased the survival rate after MI. Macrophage infiltration increased in the myocardium after MI. Most macrophages belonged to the M1 phenotype at early phase (2 days) and the M2 phenotype increased greatly at late phase after MI. Nucleolin knockdown in the myocardium led to a decrease in M2 macrophage polarization with no effect on macrophage infiltration after MI. Furthermore, Notch3 and STAT6, key regulators of M2 macrophage polarization, were upregulated by nucleolin in RAW 264.7 macrophages. Conclusions: Lack of nucleolin impaired heart function during recovery after MI by reducing M2 macrophage polarization. This finding probably points to a new therapeutic option for ischemic heart disease.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yohei Kawai ◽  
Yuji Narita ◽  
Aika Yamawaki-Ogata ◽  
Akihiko Usui ◽  
Kimihiro Komori

Background. The pathogenesis of abdominal aortic aneurysm (AAA) is characterized by atherosclerosis with chronic inflammation in the aortic wall. Montelukast is a selective cys-LT 1 receptor antagonist that can suppress atherosclerotic diseases. We evaluated the in vitro properties of montelukast and its in vivo activities in an angiotensin II–infused apolipoprotein E–deficient (apoE−/−) AAA mouse model. Methods. The mouse monocyte/macrophage cell line J774A.1 was used in vitro. M1 macrophages were treated with montelukast, and gene expressions of inflammatory cytokines were measured. Macrophages were cultured with montelukast, then gene expressions of arginase-1 and IL (interleukin)-10 were assessed by quantitative polymerase chain reaction, arginase-1 was measured by fluorescence-activated cell sorting, and IL-10 concentration was analyzed by enzyme-linked immunosorbent assay. In vivo, one group (Mont, n=7) received oral montelukast (10 mg/kg/day) for 28 days, and the other group (Saline, n=7) was given normal Saline as a control for the same period. Aortic diameters, activities of matrix metalloproteinases (MMPs), cytokine concentrations, and the number of M2 macrophages were analyzed. Results. Relative to control, montelukast significantly suppressed gene expressions of MMP-2, MMP-9, and IL-1β, induced gene expressions of arginase-1 and IL-10, enhanced the expression of the arginase-1 cell surface protein, and increased the protein concentration of IL-10. In vivo, montelukast significantly decreased aortic expansion (Saline vs Mont; 2.44 ± 0.15 mm vs 1.59 ± 0.20 mm, P<.01), reduced MMP-2 activity (Saline vs Mont; 1240 μM vs 755 μM, P<.05), and induced infiltration of M2 macrophages (Saline vs Mont; 7.51 % vs 14.7 %, P<.05). Conclusion. Montelukast induces M2 macrophage polarization and prevents AAA formation in apoE−/− mice.


2018 ◽  
Vol 399 (11) ◽  
pp. 1285-1295 ◽  
Author(s):  
Ling-li Zhang ◽  
Lian-feng Zhang ◽  
Yun-bo Shi

Abstract The paxillin and M2 macrophage are all involved in cell proliferation and tumor progression, and this study aims to explore the interaction between them in colon cancer and the role of paxillin in cancer progression. Expression of mRNAs and proteins was determined by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Western blot, separately. Endogenous expression of genes was modulated by recombinant plasmids and cell transfection. The levels of cytokines were determined by enzyme-linked immunosorbent assay (ELISA). The cell viability, invasion and migration were detected using the MTT assay, the transwell assay and the wound-healing cell migration assay, respectively. A nude mouse model for human colon cancer was constructed for tumor orthotopic expression. Paxillin was up-regulated in tumor-associated macrophages (TAMs). Paxillin was up-regulated in process of M2 macrophage polarization. M2 macrophage polarization was inhibited with paxillin suppressed. Down-regulated paxillin inhibited cell proliferation and invasion in colon cancer through suppressing M2 macrophage polarization. PI3k/Akt inhibitor repressed M2 macrophage polarization through down-regulating paxillin. PI3k/Akt inhibitor inhibited the function of the macrophage in promoting cell proliferation and invasion of colon cancer through down-regulating paxillin. Down-regulated paxillin in macrophages inhibited tumor growth of colon cancer. With the PI3K/AKT pathway inhibited, down-regulated paxillin suppressed colon cancer cell proliferation and invasion by inhibiting the M2 macrophage polarization, thereby restraining the tumor progression.


Cell Reports ◽  
2017 ◽  
Vol 19 (6) ◽  
pp. 1202-1213 ◽  
Author(s):  
Laura Formentini ◽  
Fulvio Santacatterina ◽  
Cristina Núñez de Arenas ◽  
Konstantinos Stamatakis ◽  
David López-Martínez ◽  
...  

Author(s):  
Roberta F.J. Criado ◽  
Paulo Ricardo Criado ◽  
Carla Pagliari ◽  
Mirian N. Sotto ◽  
Carlos D'Apparecida Machado Filho ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document