scholarly journals Role of Microbiota-Derived Metabolites in Alcoholic and Non-Alcoholic Fatty Liver Diseases

2021 ◽  
Vol 23 (1) ◽  
pp. 426
Author(s):  
Ji-Won Park ◽  
Sung-Eun Kim ◽  
Na Young Lee ◽  
Jung-Hee Kim ◽  
Jang-Han Jung ◽  
...  

Chronic liver disease encompasses diseases that have various causes, such as alcoholic liver disease (ALD) and non-alcoholic fatty liver disease (NAFLD). Gut microbiota dysregulation plays a key role in the pathogenesis of ALD and NAFLD through the gut–liver axis. The gut microbiota consists of various microorganisms that play a role in maintaining the homeostasis of the host and release a wide number of metabolites, including short-chain fatty acids (SCFAs), peptides, and hormones, continually shaping the host’s immunity and metabolism. The integrity of the intestinal mucosal and vascular barriers is crucial to protect liver cells from exposure to harmful metabolites and pathogen-associated molecular pattern molecules. Dysbiosis and increased intestinal permeability may allow the liver to be exposed to abundant harmful metabolites that promote liver inflammation and fibrosis. In this review, we introduce the metabolites and components derived from the gut microbiota and discuss their pathologic effect in the liver alongside recent advances in molecular-based therapeutics and novel mechanistic findings associated with the gut–liver axis in ALD and NAFLD.

Nutrients ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1712 ◽  
Author(s):  
Yun Ji ◽  
Yue Yin ◽  
Ziru Li ◽  
Weizhen Zhang

Human gut microbiota has been increasingly recognized as a pivotal determinant of non-alcoholic fatty liver disease (NAFLD). Apart from the changes in the composition of gut microbiota, the components and metabolites derived from intestinal microbiota have emerged as key factors in modulating the pathological process of NAFLD. Compelling evidences have revealed that gut microbiota generates a variety of bioactive substances that interact with the host liver cells through the portal vein. These substances include the components derived from bacteria such as lipopolysaccharides, peptidoglycan, DNA, and extracellular vesicles, as well as the metabolites ranging from short-chain fatty acids, indole and its derivatives, trimethylamine, secondary bile acids, to carotenoids and phenolic compounds. The mechanisms underlying the hepatic responses to the bioactive substances from gut bacteria have been associated with the regulation of glycolipid metabolism, immune signaling response, and redox homeostasis. Illuminating the interplay between the unique factors produced from gut microbiome and the liver will provide a novel therapeutical target for NAFLD. The current review highlights the recent advances on the mechanisms by which the key ingredients and metabolites from gut microbiota modulate the development and progression of NAFLD.


Metabolism ◽  
2017 ◽  
Vol 71 ◽  
pp. 182-197 ◽  
Author(s):  
Michael Doulberis ◽  
Georgios Kotronis ◽  
Dimitra Gialamprinou ◽  
Jannis Kountouras ◽  
Panagiotis Katsinelos

Nutrients ◽  
2019 ◽  
Vol 11 (11) ◽  
pp. 2837 ◽  
Author(s):  
Chencheng Xie ◽  
Dina Halegoua-DeMarzio

Non-alcoholic fatty liver disease (NAFLD) is the hepatic consequence of metabolic syndrome, which often also includes obesity, diabetes, and dyslipidemia. The connection between gut microbiota (GM) and NAFLD has attracted significant attention in recent years. Data has shown that GM affects hepatic lipid metabolism and influences the balance between pro/anti-inflammatory effectors in the liver. Although studies reveal the association between GM dysbiosis and NAFLD, decoding the mechanisms of gut dysbiosis resulting in NAFLD remains challenging. The potential pathophysiology that links GM dysbiosis to NAFLD can be summarized as: (1) disrupting the balance between energy harvest and expenditure, (2) promoting hepatic inflammation (impairing intestinal integrity, facilitating endotoxemia, and initiating inflammatory cascades with cytokines releasing), and (3) altered biochemistry metabolism and GM-related metabolites (i.e., bile acid, short-chain fatty acids, aromatic amino acid derivatives, branched-chain amino acids, choline, ethanol). Due to the hypothesis that probiotics/synbiotics could normalize GM and reverse dysbiosis, there have been efforts to investigate the therapeutic effect of probiotics/synbiotics in patients with NAFLD. Recent randomized clinical trials suggest that probiotics/synbiotics could improve transaminases, hepatic steatosis, and reduce hepatic inflammation. Despite these promising results, future studies are necessary to understand the full role GM plays in NAFLD development and progression. Additionally, further data is needed to unravel probiotics/synbiotics efficacy, safety, and sustainability as a novel pharmacologic approaches to NAFLD.


Author(s):  
Alexandre Villard ◽  
Jérôme Boursier ◽  
Ramaroson Andriantsitohaina

The liver and intestine communicate in a bi-directional way through the biliary tract, portal vein, and other components of the gut-liver axis. The gut microbiota is one of the major contributors to the production of several proteins and bile acids. Imbalance in the gut bacterial community, called dysbiosis, participates in the development and progression of several chronic liver diseases, such as non-alcoholic fatty liver disease (NAFLD). NAFLD is currently considered the main chronic liver disease worldwide. Dysbiosis contributes to NAFLD development and progression, notably by a greater translocation of pathogen-associated molecular patterns (PAMPs) in the blood. Lipopolysaccharide (LPS) is a PAMP that activates toll-like receptor 4 (TLR4), induces liver inflammation, and participates in the development of fibrogenesis. LPS can be transported by bacterial extracellular vesicles (EVs). EVs are spherical structures produced by eukaryotic and prokaryotic cells that transfer information to distant cells and may represent new players in NAFLD development and progression. The present review summarizes the role of eukaryotic EVs, either circulating or tissue-derived, in NAFLD features, such as liver inflammation, angiogenesis, and fibrosis. Circulating EV levels are dynamic and correlate with disease stage and severity. However, scarce information is available concerning the involvement of bacterial EVs in liver disease. The present review highlights a potential role of bacterial EVs in insulin resistance and liver inflammation, although the mechanism involved has not been elucidated. Additionally, because of their distinct signatures, eukaryotic and prokaryotic EVs may also represent a promising NAFLD diagnostic tool as a "liquid biopsy" in the future.


Biomolecules ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 56
Author(s):  
Natalia Vallianou ◽  
Gerasimos Socrates Christodoulatos ◽  
Irene Karampela ◽  
Dimitrios Tsilingiris ◽  
Faidon Magkos ◽  
...  

Non-alcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide. NAFLD begins as a relatively benign hepatic steatosis which can evolve to non-alcoholic steatohepatitis (NASH); the risk of cirrhosis and hepatocellular carcinoma (HCC) increases when fibrosis is present. NAFLD represents a complex process implicating numerous factors—genetic, metabolic, and dietary—intertwined in a multi-hit etiopathogenetic model. Recent data have highlighted the role of gut dysbiosis, which may render the bowel more permeable, leading to increased free fatty acid absorption, bacterial migration, and a parallel release of toxic bacterial products, lipopolysaccharide (LPS), and proinflammatory cytokines that initiate and sustain inflammation. Although gut dysbiosis is present in each disease stage, there is currently no single microbial signature to distinguish or predict which patients will evolve from NAFLD to NASH and HCC. Using 16S rRNA sequencing, the majority of patients with NAFLD/NASH exhibit increased numbers of Bacteroidetes and differences in the presence of Firmicutes, resulting in a decreased F/B ratio in most studies. They also present an increased proportion of species belonging to Clostridium, Anaerobacter, Streptococcus, Escherichia, and Lactobacillus, whereas Oscillibacter, Flavonifaractor, Odoribacter, and Alistipes spp. are less prominent. In comparison to healthy controls, patients with NASH show a higher abundance of Proteobacteria, Enterobacteriaceae, and Escherichia spp., while Faecalibacterium prausnitzii and Akkermansia muciniphila are diminished. Children with NAFLD/NASH have a decreased proportion of Oscillospira spp. accompanied by an elevated proportion of Dorea, Blautia, Prevotella copri, and Ruminococcus spp. Gut microbiota composition may vary between population groups and different stages of NAFLD, making any conclusive or causative claims about gut microbiota profiles in NAFLD patients challenging. Moreover, various metabolites may be involved in the pathogenesis of NAFLD, such as short-chain fatty acids, lipopolysaccharide, bile acids, choline and trimethylamine-N-oxide, and ammonia. In this review, we summarize the role of the gut microbiome and metabolites in NAFLD pathogenesis, and we discuss potential preventive and therapeutic interventions related to the gut microbiome, such as the administration of probiotics, prebiotics, synbiotics, antibiotics, and bacteriophages, as well as the contribution of bariatric surgery and fecal microbiota transplantation in the therapeutic armamentarium against NAFLD. Larger and longer-term prospective studies, including well-defined cohorts as well as a multi-omics approach, are required to better identify the associations between the gut microbiome, microbial metabolites, and NAFLD occurrence and progression.


2019 ◽  
Vol 38 (3) ◽  
pp. 81-88 ◽  
Author(s):  
Chyntia Olivia Maurine JASIRWAN ◽  
Cosmas Rinaldi Adithya LESMANA ◽  
Irsan HASAN ◽  
Andri Sanityosos SULAIMAN ◽  
Rino Alvani GANI

Sign in / Sign up

Export Citation Format

Share Document