scholarly journals Editorial to Special Issue Molecular Biology of Selenium in Health and Disease

2022 ◽  
Vol 23 (2) ◽  
pp. 808
Author(s):  
Petra A. Tsuji ◽  
Dolph L. Hatfield

The selenium field expanded at a rapid rate for about 45 years, from the mid-1970’s until about 2015 (see [...]

Genes ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 457 ◽  
Author(s):  
Subbaya Subramanian ◽  
Clifford J. Steer

Our understanding of non-coding RNA has significantly changed based on recent advances in genomics and molecular biology, and their role is recognized to include far more than a link between the sequence of DNA and synthesized proteins [...]


2001 ◽  
Vol 66 (9) ◽  
pp. 1315-1340 ◽  
Author(s):  
Vladimir J. Balcar ◽  
Akiko Takamoto ◽  
Yukio Yoneda

The review highlights the landmark studies leading from the discovery and initial characterization of the Na+-dependent "high affinity" uptake in the mammalian brain to the cloning of individual transporters and the subsequent expansion of the field into the realm of molecular biology. When the data and hypotheses from 1970's are confronted with the recent developments in the field, we can conclude that the suggestions made nearly thirty years ago were essentially correct: the uptake, mediated by an active transport into neurons and glial cells, serves to control the extracellular concentrations of L-glutamate and prevents the neurotoxicity. The modern techniques of molecular biology may have provided additional data on the nature and location of the transporters but the classical neurochemical approach, using structural analogues of glutamate designed as specific inhibitors or substrates for glutamate transport, has been crucial for the investigations of particular roles that glutamate transport might play in health and disease. Analysis of recent structure/activity data presented in this review has yielded a novel insight into the pharmacological characteristics of L-glutamate transport, suggesting existence of additional heterogeneity in the system, beyond that so far discovered by molecular genetics. More compounds that specifically interact with individual glutamate transporters are urgently needed for more detailed investigations of neurochemical characteristics of glutamatergic transport and its integration into the glutamatergic synapses in the central nervous system. A review with 162 references.


2016 ◽  
Vol 13 (3) ◽  
Author(s):  
Jacob Beal ◽  
Robert Sidney Cox ◽  
Raik Grünberg ◽  
James McLaughlin ◽  
Tramy Nguyen ◽  
...  

SummarySynthetic biology builds upon the techniques and successes of genetics, molecular biology, and metabolic engineering by applying engineering principles to the design of biological systems. The field still faces substantial challenges, including long development times, high rates of failure, and poor reproducibility. One method to ameliorate these problems would be to improve the exchange of information about designed systems between laboratories. The Synthetic Biology Open Language (SBOL) has been developed as a standard to support the specification and exchange of biological design information in synthetic biology, filling a need not satisfied by other pre-existing standards. This document details version 2.1 of SBOL that builds upon version 2.0 published in last year’s JIB special issue. In particular, SBOL 2.1 includes improved rules for what constitutes a valid SBOL document, new role fields to simplify the expression of sequence features and how components are used in context, and new best practices descriptions to improve the exchange of basic sequence topology information and the description of genetic design provenance, as well as miscellaneous other minor improvements.


Sign in / Sign up

Export Citation Format

Share Document