scholarly journals Repeated Usage of an L3 Motorway Chauffeur: Change of Evaluation and Usage

Information ◽  
2020 ◽  
Vol 11 (2) ◽  
pp. 114 ◽  
Author(s):  
Barbara Metz ◽  
Johanna Wörle ◽  
Michael Hanig ◽  
Marcus Schmitt ◽  
Aaron Lutz

Most studies on users’ perception of highly automated driving functions are focused on first contact/single usage. Nevertheless, it is expected that with repeated usage, acceptance and usage of automated driving functions might change this perception (behavioural adaptation). Changes can occur in drivers’ evaluation, in function usage and in drivers’ reactions to take-over situations. In a driving simulator study, N = 30 drivers used a level 3 (L3) automated driving function for motorways during six experimental sessions. They were free to activate/deactivate that system as they liked and to spend driving time on self-chosen side tasks. Results already show an increase of experienced trust and safety, together with an increase of time spent on side tasks between the first and fourth sessions. Furthermore, attention directed to the road decreases with growing experience with the system. The results are discussed with regard to the theory of behavioural adaptation. Results indicate that the adaptation of acceptance and usage of the highly automated driving function occurs rather quickly. At the same time, no behavioural adaptation for the reaction to take-over situations could be found.

2021 ◽  
Vol 5 (4) ◽  
pp. 16
Author(s):  
Simon Danner ◽  
Alexander Feierle ◽  
Carina Manger ◽  
Klaus Bengler

Context-adaptive functions are not new in the driving context, but even so, investigations into these functions concerning the automation human–machine interface (aHMI) have yet to be carried out. This study presents research into context-adaptive availability notifications for an SAE Level 3 automation in scenarios where participants were surprised by either availability or non-availability. For this purpose, participants (N = 30) took part in a driving simulator study, experiencing a baseline HMI concept as a comparison, and a context-adaptive HMI concept that provided context-adaptive availability notifications with the aim of improving acceptance and usability, while decreasing frustration (due to unexpected non-availability) and gaze deviation from the road when driving manually. Furthermore, it was hypothesized that participants, when experiencing the context-adaptive HMI, would activate the automated driving function more quickly when facing unexpected availability. None of the hypotheses could be statistically confirmed; indeed, where gaze behavior was concerned, the opposite effects were found, indicating increased distraction induced by the context-adaptive HMI. However, the trend in respect to the activation time was towards shorter times with the context-adaptive notifications. These results led to the conclusion that context-adaptive availability notifications might not always be beneficial for users, while more salient availability notifications in the case of an unexpected availability could be advantageous.


2021 ◽  
Author(s):  
J. B. Manchon ◽  
Mercedes Bueno ◽  
Jordan Navarro

Trust in Automation is known to influence human-automation interaction and user behaviour. In the Automated Driving (AD) context, studies showed the impact of drivers’ Trust in Automated Driving (TiAD), and linked it with, e.g., difference in environment monitoring or driver’s behaviour. This study investigated the influence of driver’s initial level of TiAD on driver’s behaviour and early trust construction during Highly Automated Driving (HAD). Forty drivers participated in a driving simulator study. Based on a trust questionnaire, participants were divided in two groups according to their initial level of TiAD: high (Trustful) vs. low (Distrustful). Declared level of trust, gaze behaviour and Non-Driving-Related Activities (NDRA) engagement were compared between the two groups over time. Results showed that Trustful drivers engaged more in NDRA and spent less time monitoring the road compared to Distrustful drivers. However, an increase in trust was observed in both groups. These results suggest that initial level of TiAD impact drivers’ behaviour and further trust evolution.


2020 ◽  
Vol 4 (3) ◽  
pp. 36
Author(s):  
Tobias Hecht ◽  
Simon Danner ◽  
Alexander Feierle ◽  
Klaus Bengler

Current research in human factors and automated driving is increasingly focusing on predictable transitions instead of urgent and critical take-overs. Predictive human–machine interface (HMI) elements displaying the remaining time until the next request to intervene were identified as a user need, especially when the user is engaging in non-driving related activities (NDRA). However, these estimations are prone to errors due to changing traffic conditions and updated map-based information. Thus, we investigated a confidence display for Level 3 automated driving time estimations. Based on a preliminary study, a confidence display resembling a mobile phone connectivity symbol was developed. In a mixed-design driving simulator study with 32 participants, we assessed the impact of the confidence display concept (within factor) on usability, frustration, trust and acceptance during city and highway automated driving (between factor). During automated driving sections, participants engaged in a naturalistic visual NDRA to create a realistic scenario. Significant effects were found for the scenario: participants in the city experienced higher levels of frustration. However, the confidence display has no significant impact on the subjective evaluation and most participants preferred the baseline HMI without a confidence symbol.


Author(s):  
Davide Maggi ◽  
Richard Romano ◽  
Oliver Carsten

Objective A driving simulator study explored how drivers behaved depending on their initial role during transitions between highly automated driving (HAD) and longitudinally assisted driving (via adaptive cruise control). Background During HAD, drivers might issue a take-over request (TOR), initiating a transition of control that was not planned. Understanding how drivers behave in this situation and, ultimately, the implications on road safety is of paramount importance. Method Sixteen participants were recruited for this study and performed transitions of control between HAD and longitudinally assisted driving in a driving simulator. While comparing how drivers behaved depending on whether or not they were the initiators, different handover strategies were presented to analyze how drivers adapted to variations in the authority level they were granted at various stages of the transitions. Results Whenever they initiated the transition, drivers were more engaged with the driving task and less prone to follow the guidance of the proposed strategies. Moreover, initiating a transition and having the highest authority share during the handover made the drivers more engaged with the driving task and attentive toward the road. Conclusion Handover strategies that retained a larger authority share were more effective whenever the automation initiated the transition. Under driver-initiated transitions, reducing drivers’ authority was detrimental for both performance and comfort. Application As the operational design domain of automated vehicles (Society of Automotive Engineers [SAE] Level 3/4) expands, the drivers might very well fight boredom by taking over spontaneously, introducing safety issues so far not considered but nevertheless very important.


Author(s):  
Huiping Zhou ◽  
Makoto Itoh ◽  
Satoshi Kitazaki

This paper presents an adaptive mode (level) transition in highly combined driving automation in which the mode of a system could adaptively shift to any level including SAE level 3 (conditional automation, CA) to level 2 (partial automation) based on the driving environment. We show the effects of the adaptive transition on the take over of car control by a human driver and driving behavior after intervention when the system issues a response to intervene. A driving simulator experiment is conducted to collect data during the transition from automated control to manual driving in three scenes: obstacle on a driving lane, blurred lane mark, and stopped car ahead. Results indicate that the interventions of drivers who experience the adaptive transition are delayed in comparison to those who experience only the fixed transition. The adaptive transition is conducive for drivers to stop the car for preventing a potential collision with a stopped car ahead. Owing to the adaptive transition, drivers perceive a critical hazard after taking over car control and provide a rapid response. In addition, during the adaptive transition, drivers prefer verbal messages to the simple “beeping” message.


Author(s):  
Fabienne Roche ◽  
Anna Somieski ◽  
Stefan Brandenburg

Objective: We investigated drivers’ behavior and subjective experience when repeatedly taking over their vehicles’ control depending on the design of the takeover request (TOR) and the modality of the nondriving-related task (NDRT). Background: Previous research has shown that taking over vehicle control after highly automated driving provides several problems for drivers. There is evidence that the TOR design and the NDRT modality may influence takeover behavior and that driver behavior changes with more experience. Method: Forty participants were requested to resume control of their simulated vehicle six times. The TOR design (auditory or visual-auditory) and the NDRT modality (auditory or visual) were varied. Drivers’ takeover behavior, gaze patterns, and subjective workload were recorded and analyzed. Results: Results suggest that drivers change their behavior to the repeated experience of takeover situations. An auditory TOR leads to safer takeover behavior than a visual-auditory TOR. And with an auditory TOR, the takeover behavior improves with experience. Engaging in the visually demanding NDRT leads to fewer gazes on the road than the auditory NDRT. Participants’ fixation duration on the road decreased over the three takeovers with the visually demanding NDRT. Conclusions: The results imply that (a) drivers change their behavior to repeated takeovers, (b) auditory TOR designs might be preferable over visual-auditory TOR designs, and (c) auditory demanding NDRTs allow drivers to focus more on the driving scene. Application: The results of the present study can be used to design TORs and determine allowed NDRTs in highly automated driving.


Author(s):  
Harald Witt ◽  
Carl G. Hoyos

Accident statistics and studies of driving behavior have shown repeatedly that curved roads are hazardous. It was hypothesized that the safety of curves could be improved by indicating in advance the course of the road in a more effective way than do traditional road signs. A code of sequences of stripes put on right edge of the pavement was developed to indicate to the driver the radius of the curve ahead. The main characteristic of this code was the frequency of transitions from code elements to gaps between elements. The effect of these markings was investigated on a driving simulator. Twelve subjects drove on simulated roads of different curvature and with different placement of the code in the approach zone. Some positive effects of the advance information could be observed. The subjects drove more steadily, more precisely, and with a more suitable speed profile.


2020 ◽  
Author(s):  
Tyron Louw ◽  
Rafael Goncalves ◽  
Guilhermina Torrao ◽  
Vishnu Radhakrishnan ◽  
Wei Lyu ◽  
...  

There is evidence that drivers’ behaviour adapts after using different advanced driving assistance systems. For instance, drivers’ headway during car-following reduces after using adaptive cruise control. However, little is known about whether, and how, drivers’ behaviour will change if they experience automated car-following, and how this is affected by engagement in non-driving related tasks (NDRT). The aim of this driving simulator study, conducted as part of the H2020 L3Pilot project, was to address this topic. We also investigated the effect of the presence of a lead vehicle during the resumption of control, on subsequent manual driving behaviour. Thirty-two participants were divided into two experimental groups. During automated car-following, one group was engaged in an NDRT (SAE Level 3), while the other group was free to look around the road environment (SAE Level 2). Both groups were exposed to Long (1.5 s) and Short (.5 s) Time Headway (THW) conditions during automated car-following, and resumed control both with and without a lead vehicle. All post-automation manual drives were compared to a Baseline Manual Drive, which was recorded at the start of the experiment. Drivers in both groups significantly reduced their time headway in all post-automation drives, compared to a Baseline Manual Drive. There was a greater reduction in THW after drivers resumed control in the presence of a lead vehicle, and also after they had experienced a shorter THW during automated car following. However, whether drivers were in L2 or L3 did not appear to influence the change in mean THW. Subjective feedback suggests that drivers appeared not to be aware of the changes to their driving behaviour, but preferred longer THWs in automation. Our results suggest that automated driving systems should adopt longer THWs in car-following situations, since drivers’ behavioural adaptation may lead to adoption of unsafe headways after resumption of control.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Frederik Naujoks ◽  
Yannick Forster ◽  
Katharina Wiedemann ◽  
Alexandra Neukum

During conditionally automated driving (CAD), driving time can be used for non-driving-related tasks (NDRTs). To increase safety and comfort of an automated ride, upcoming automated manoeuvres such as lane changes or speed adaptations may be communicated to the driver. However, as the driver’s primary task consists of performing NDRTs, they might prefer to be informed in a nondistracting way. In this paper, the potential of using speech output to improve human-automation interaction is explored. A sample of 17 participants completed different situations which involved communication between the automation and the driver in a motion-based driving simulator. The Human-Machine Interface (HMI) of the automated driving system consisted of a visual-auditory HMI with either generic auditory feedback (i.e., standard information tones) or additional speech output. The drivers were asked to perform a common NDRT during the drive. Compared to generic auditory output, communicating upcoming automated manoeuvres additionally by speech led to a decrease in self-reported visual workload and decreased monitoring of the visual HMI. However, interruptions of the NDRT were not affected by additional speech output. Participants clearly favoured the HMI with additional speech-based output, demonstrating the potential of speech to enhance usefulness and acceptance of automated vehicles.


Sign in / Sign up

Export Citation Format

Share Document