scholarly journals Special Issue on Emerging Trends and Challenges in Supervised Learning Tasks

Information ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 481
Author(s):  
Barbara Pes

With the massive growth of data-intensive applications, the machine learning field has gained widespread popularity [...]

Sentiment Analysis is individuals' opinions and feedbacks study towards a substance, which can be items, services, movies, people or events. The opinions are mostly expressed as remarks or reviews. With the social network, gatherings and websites, these reviews rose as a significant factor for the client’s decision to buy anything or not. These days, a vast scalable computing environment provides us with very sophisticated way of carrying out various data-intensive natural language processing (NLP) and machine-learning tasks to examine these reviews. One such example is text classification, a compelling method for predicting the clients' sentiment. In this paper, we attempt to center our work of sentiment analysis on movie review database. We look at the sentiment expression to order the extremity of the movie reviews on a size of 0(highly disliked) to 4(highly preferred) and perform feature extraction and ranking and utilize these features to prepare our multilabel classifier to group the movie review into its right rating. This paper incorporates sentiment analysis utilizing feature-based opinion mining and managed machine learning. The principle center is to decide the extremity of reviews utilizing nouns, verbs, and adjectives as opinion words. In addition, a comparative study on different classification approaches has been performed to determine the most appropriate classifier to suit our concern problem space. In our study, we utilized six distinctive machine learning algorithms – Naïve Bayes, Logistic Regression, SVM (Support Vector Machine), RF (Random Forest) KNN (K nearest neighbors) and SoftMax Regression.


2018 ◽  
Vol 19 (3) ◽  
pp. iii-iv
Author(s):  
Sasko Ristov

We are happy to present this special issue of the scientific journal Scalable Computing: Practice and Experience. In this special issue on Infrastructures and Algorithms for Scalable Computing (Volume 19, No 3 June 2018), we have selected four papers out of submitted nine, which gone through a peer review according to the journal policy. All papers represent novel results in the fields of distributed algorithms and infrastructures for scalable computing. The first paper presents present a novel approach for efficient data placement, which improves the performance of workflow execution in distributed datacenters. The greedy heuristic algorithm, which is based on a network flow optimization framework, minimizes the total storage cost, including efforts to move and store the data from different source locations and dependencies. The second paper evaluated the significance of different clustering techniques viz. k-means, Hierarchical Agglomerative Clustering and Markov Clustering in groupingawaredata placement for data-intensive applications with interest locality. The evaluation in Azure reported that Markov Clustering-based data placement strategy improves the local map execution and reduces the execution time compared to Hadoops Default Data Placement Strategy and other evaluated clustering techniques. This is more emphasized for data-intensive applications that have interest locality. The third paper presents an experimental evaluation of the openMP thread-mapping strategies in different hardware environments (IntelXeon Phi coprocessor and hybrid CPU-MIC platforms). The paper shows the optimal choice of thread affinity, the number of threads and the execution mode that can provide optimal performance of the LU factorization. In the fourth paper, the authors study the amount of memory occupied by sparse matrices split up into same-size blocks. The paper considers and statistically evaluates four popular storage formats and combinations among them. The conclusion is that block-based storage formats may significantly reduce memory footprints of sparse matrices arising from a wide range of application domains. We use this opportunity to thank all contributors to this Special Issue: all authors who submitted the results of their latest research and all reviewers for their valuable comments and suggestions for improvement. We would like to express our special gratitude for the Editor-in-Chief, Professor Dana Petcu, for her constant support during the whole process of this Special Issue.


2019 ◽  
Vol 109 (2) ◽  
pp. 373-440 ◽  
Author(s):  
Jesper E. van Engelen ◽  
Holger H. Hoos

AbstractSemi-supervised learning is the branch of machine learning concerned with using labelled as well as unlabelled data to perform certain learning tasks. Conceptually situated between supervised and unsupervised learning, it permits harnessing the large amounts of unlabelled data available in many use cases in combination with typically smaller sets of labelled data. In recent years, research in this area has followed the general trends observed in machine learning, with much attention directed at neural network-based models and generative learning. The literature on the topic has also expanded in volume and scope, now encompassing a broad spectrum of theory, algorithms and applications. However, no recent surveys exist to collect and organize this knowledge, impeding the ability of researchers and engineers alike to utilize it. Filling this void, we present an up-to-date overview of semi-supervised learning methods, covering earlier work as well as more recent advances. We focus primarily on semi-supervised classification, where the large majority of semi-supervised learning research takes place. Our survey aims to provide researchers and practitioners new to the field as well as more advanced readers with a solid understanding of the main approaches and algorithms developed over the past two decades, with an emphasis on the most prominent and currently relevant work. Furthermore, we propose a new taxonomy of semi-supervised classification algorithms, which sheds light on the different conceptual and methodological approaches for incorporating unlabelled data into the training process. Lastly, we show how the fundamental assumptions underlying most semi-supervised learning algorithms are closely connected to each other, and how they relate to the well-known semi-supervised clustering assumption.


2020 ◽  
Vol 6 (5) ◽  
pp. eaay2378 ◽  
Author(s):  
Zhong Sun ◽  
Giacomo Pedretti ◽  
Alessandro Bricalli ◽  
Daniele Ielmini

Machine learning has been getting attention in recent years as a tool to process big data generated by the ubiquitous sensors used in daily life. High-speed, low-energy computing machines are in demand to enable real-time artificial intelligence processing of such data. These requirements challenge the current metal-oxide-semiconductor technology, which is limited by Moore’s law approaching its end and the communication bottleneck in conventional computing architecture. Novel computing concepts, architectures, and devices are thus strongly needed to accelerate data-intensive applications. Here, we show that a cross-point resistive memory circuit with feedback configuration can train traditional machine learning algorithms such as linear regression and logistic regression in just one step by computing the pseudoinverse matrix of the data within the memory. One-step learning is further supported by simulations of the prediction of housing price in Boston and the training of a two-layer neural network for MNIST digit recognition.


2021 ◽  
Author(s):  
◽  
Andrew Lensen

<p>Unsupervised learning is a fundamental category of machine learning that works on data for which no pre-existing labels are available. Unlike in supervised learning, which has such labels, methods that perform unsupervised learning must discover intrinsic patterns within data.  The size and complexity of data has increased substantially in recent years, which has necessitated the creation of new techniques for reducing the complexity and dimensionality of data in order to allow humans to understand the knowledge contained within data. This is particularly problematic in unsupervised learning, as the number of possible patterns in a dataset grows exponentially with regard to the number of dimensions. Feature manipulation techniques such as feature selection (FS) and feature construction (FC) are often used in these situations. FS automatically selects the most valuable features (attributes) in a dataset, whereas FC constructs new, more powerful and meaningful features that provide a lower-dimensional space.  Evolutionary computation (EC) approaches have become increasingly recognised for their potential to provide high-quality solutions to data mining problems in a reasonable amount of computational time. Unlike other popular techniques such as neural networks, EC methods have global search ability without needing gradient information, which makes them much more flexible and applicable to a wider range of problems. EC approaches have shown significant potential in feature manipulation tasks with methods such as Particle Swarm Optimisation (PSO) commonly used for FS, and Genetic Programming (GP) for FC.  The use of EC for feature manipulation has, until now, been predominantly restricted to supervised learning problems. This is a notable gap in the research: if unsupervised learning is even more sensitive to high-dimensionality, then why is EC-based feature manipulation not used for unsupervised learning problems?  This thesis provides the first comprehensive investigation into the use of evolutionary feature manipulation for unsupervised learning tasks. It clearly shows the ability of evolutionary feature manipulation to improve both the performance of algorithms and interpretability of solutions in unsupervised learning tasks. A variety of tasks are investigated, including the well-established task of clustering, as well as more recent unsupervised learning problems, such as benchmark dataset creation and manifold learning.  This thesis proposes a new PSO-based approach to performing simultaneous FS and clustering. A number of improvements to the state-of-the-art are made, including the introduction of a new medoid-based representation and an improved fitness function. A sophisticated three-stage algorithm, which takes advantage of heuristic techniques to determine the number of clusters and to fine-tune clustering performance is also developed. Empirical evaluation on a range of clustering problems demonstrates a decrease in the number of features used, while also improving the clustering performance.  This thesis also introduces two innovative approaches to performing wrapper-based FC in clustering tasks using GP. An initial approach where constructed features are directly provided to the k-means clustering algorithm demonstrates the clear strength of GP-based FC for improving clustering results. A more advanced method is proposed that utilises the functional nature of GP-based FC to evolve more specific, concise, and understandable similarity functions for use in clustering algorithms. These similarity functions provide clear improvements in performance and can be easily interpreted by machine learning practitioners.  This thesis demonstrates the ability of evolutionary feature manipulation to solve unsupervised learning tasks that traditional methods have struggled with. The synthesis of benchmark datasets has long been a technique used for evaluating machine learning techniques, but this research is the first to present an approach that automatically creates diverse and challenging redundant features for a given dataset. This thesis introduces a GP-based FC approach that creates difficult benchmark datasets for evaluating FS algorithms. It also makes the intriguing discovery that using a mutual information-based fitness function with GP has the potential to be used to improve supervised learning tasks even when the labels are not utilised.  Manifold learning is an approach to dimensionality reduction that aims to reduce dimensionality by discovering the inherent lower-dimensional structure of a dataset. While state-of-the-art manifold learning approaches show impressive performance in reducing data dimensionality, they do so at the cost of removing the ability for humans to understand the data in terms of the original features. By utilising a GP-based approach, this thesis proposes new methods that can perform interpretable manifold learning, which provides deep insight into patterns in the data.  These four contributions clearly support the hypothesis that evolutionary feature manipulation has untapped potential in unsupervised learning. This thesis demonstrates that EC-based feature manipulation can be successfully applied to a variety of unsupervised learning tasks with clear improvements in both performance and interpretability. A plethora of future research directions in this area are also discovered, which we hope will lead to further valuable findings in this area.</p>


2021 ◽  
Author(s):  
◽  
Andrew Lensen

<p>Unsupervised learning is a fundamental category of machine learning that works on data for which no pre-existing labels are available. Unlike in supervised learning, which has such labels, methods that perform unsupervised learning must discover intrinsic patterns within data.  The size and complexity of data has increased substantially in recent years, which has necessitated the creation of new techniques for reducing the complexity and dimensionality of data in order to allow humans to understand the knowledge contained within data. This is particularly problematic in unsupervised learning, as the number of possible patterns in a dataset grows exponentially with regard to the number of dimensions. Feature manipulation techniques such as feature selection (FS) and feature construction (FC) are often used in these situations. FS automatically selects the most valuable features (attributes) in a dataset, whereas FC constructs new, more powerful and meaningful features that provide a lower-dimensional space.  Evolutionary computation (EC) approaches have become increasingly recognised for their potential to provide high-quality solutions to data mining problems in a reasonable amount of computational time. Unlike other popular techniques such as neural networks, EC methods have global search ability without needing gradient information, which makes them much more flexible and applicable to a wider range of problems. EC approaches have shown significant potential in feature manipulation tasks with methods such as Particle Swarm Optimisation (PSO) commonly used for FS, and Genetic Programming (GP) for FC.  The use of EC for feature manipulation has, until now, been predominantly restricted to supervised learning problems. This is a notable gap in the research: if unsupervised learning is even more sensitive to high-dimensionality, then why is EC-based feature manipulation not used for unsupervised learning problems?  This thesis provides the first comprehensive investigation into the use of evolutionary feature manipulation for unsupervised learning tasks. It clearly shows the ability of evolutionary feature manipulation to improve both the performance of algorithms and interpretability of solutions in unsupervised learning tasks. A variety of tasks are investigated, including the well-established task of clustering, as well as more recent unsupervised learning problems, such as benchmark dataset creation and manifold learning.  This thesis proposes a new PSO-based approach to performing simultaneous FS and clustering. A number of improvements to the state-of-the-art are made, including the introduction of a new medoid-based representation and an improved fitness function. A sophisticated three-stage algorithm, which takes advantage of heuristic techniques to determine the number of clusters and to fine-tune clustering performance is also developed. Empirical evaluation on a range of clustering problems demonstrates a decrease in the number of features used, while also improving the clustering performance.  This thesis also introduces two innovative approaches to performing wrapper-based FC in clustering tasks using GP. An initial approach where constructed features are directly provided to the k-means clustering algorithm demonstrates the clear strength of GP-based FC for improving clustering results. A more advanced method is proposed that utilises the functional nature of GP-based FC to evolve more specific, concise, and understandable similarity functions for use in clustering algorithms. These similarity functions provide clear improvements in performance and can be easily interpreted by machine learning practitioners.  This thesis demonstrates the ability of evolutionary feature manipulation to solve unsupervised learning tasks that traditional methods have struggled with. The synthesis of benchmark datasets has long been a technique used for evaluating machine learning techniques, but this research is the first to present an approach that automatically creates diverse and challenging redundant features for a given dataset. This thesis introduces a GP-based FC approach that creates difficult benchmark datasets for evaluating FS algorithms. It also makes the intriguing discovery that using a mutual information-based fitness function with GP has the potential to be used to improve supervised learning tasks even when the labels are not utilised.  Manifold learning is an approach to dimensionality reduction that aims to reduce dimensionality by discovering the inherent lower-dimensional structure of a dataset. While state-of-the-art manifold learning approaches show impressive performance in reducing data dimensionality, they do so at the cost of removing the ability for humans to understand the data in terms of the original features. By utilising a GP-based approach, this thesis proposes new methods that can perform interpretable manifold learning, which provides deep insight into patterns in the data.  These four contributions clearly support the hypothesis that evolutionary feature manipulation has untapped potential in unsupervised learning. This thesis demonstrates that EC-based feature manipulation can be successfully applied to a variety of unsupervised learning tasks with clear improvements in both performance and interpretability. A plethora of future research directions in this area are also discovered, which we hope will lead to further valuable findings in this area.</p>


2020 ◽  
Vol 15 ◽  
Author(s):  
Shuwen Zhang ◽  
Qiang Su ◽  
Qin Chen

Abstract: Major animal diseases pose a great threat to animal husbandry and human beings. With the deepening of globalization and the abundance of data resources, the prediction and analysis of animal diseases by using big data are becoming more and more important. The focus of machine learning is to make computers learn how to learn from data and use the learned experience to analyze and predict. Firstly, this paper introduces the animal epidemic situation and machine learning. Then it briefly introduces the application of machine learning in animal disease analysis and prediction. Machine learning is mainly divided into supervised learning and unsupervised learning. Supervised learning includes support vector machines, naive bayes, decision trees, random forests, logistic regression, artificial neural networks, deep learning, and AdaBoost. Unsupervised learning has maximum expectation algorithm, principal component analysis hierarchical clustering algorithm and maxent. Through the discussion of this paper, people have a clearer concept of machine learning and understand its application prospect in animal diseases.


Sign in / Sign up

Export Citation Format

Share Document