scholarly journals Artificial Eyes with Emotion and Light Responsive Pupils for Realistic Humanoid Robots

Informatics ◽  
2021 ◽  
Vol 8 (4) ◽  
pp. 64
Author(s):  
Carl Strathearn

This study employs a novel 3D engineered robotic eye system with dielectric elastomer actuator (DEA) pupils and a 3D sculpted and colourised gelatin iris membrane to replicate the appearance and materiality of the human eye. A camera system for facial expression analysis (FEA) was installed in the left eye, and a photo-resistor for measuring light frequencies in the right. Unlike previous prototypes, this configuration permits the robotic eyes to respond to both light and emotion proximal to a human eye. A series of experiments were undertaken using a pupil tracking headset to monitor test subjects when observing positive and negative video stimuli. A second test measured pupil dilation ranges to high and low light frequencies using a high-powered artificial light. This data was converted into a series of algorithms for servomotor triangulation to control the photosensitive and emotive pupil dilation sequences. The robotic eyes were evaluated against the pupillometric data and video feeds of the human eyes to determine operational accuracy. Finally, the dilating robotic eye system was installed in a realistic humanoid robot (RHR) and comparatively evaluated in a human-robot interaction (HRI) experiment. The results of this study show that the robotic eyes can emulate the average pupil reflex of the human eye under typical light conditions and to positive and negative emotive stimuli. However, the results of the HRI experiment indicate that replicating natural eye contact behaviour was more significant than emulating pupil dilation.

Author(s):  
Giorgio Metta

This chapter outlines a number of research lines that, starting from the observation of nature, attempt to mimic human behavior in humanoid robots. Humanoid robotics is one of the most exciting proving grounds for the development of biologically inspired hardware and software—machines that try to recreate billions of years of evolution with some of the abilities and characteristics of living beings. Humanoids could be especially useful for their ability to “live” in human-populated environments, occupying the same physical space as people and using tools that have been designed for people. Natural human–robot interaction is also an important facet of humanoid research. Finally, learning and adapting from experience, the hallmark of human intelligence, may require some approximation to the human body in order to attain similar capacities to humans. This chapter focuses particularly on compliant actuation, soft robotics, biomimetic robot vision, robot touch, and brain-inspired motor control in the context of the iCub humanoid robot.


2021 ◽  
Vol 13 (2) ◽  
pp. 32
Author(s):  
Diego Reforgiato Recupero

In this paper we present a mixture of technologies tailored for e-learning related to the Deep Learning, Sentiment Analysis, and Semantic Web domains, which we have employed to show four different use cases that we have validated in the field of Human-Robot Interaction. The approach has been designed using Zora, a humanoid robot that can be easily extended with new software behaviors. The goal is to make the robot able to engage users through natural language for different tasks. Using our software the robot can (i) talk to the user and understand their sentiments through a dedicated Semantic Sentiment Analysis engine; (ii) answer to open-dialog natural language utterances by means of a Generative Conversational Agent; (iii) perform action commands leveraging a defined Robot Action ontology and open-dialog natural language utterances; and (iv) detect which objects the user is handing by using convolutional neural networks trained on a huge collection of annotated objects. Each module can be extended with more data and information and the overall architectural design is general, flexible, and scalable and can be expanded with other components, thus enriching the interaction with the human. Different applications within the e-learning domains are foreseen: The robot can either be a trainer and autonomously perform physical actions (e.g., in rehabilitation centers) or it can interact with the users (performing simple tests or even identifying emotions) according to the program developed by the teachers.


2020 ◽  
Vol 12 (1) ◽  
pp. 58-73
Author(s):  
Sofia Thunberg ◽  
Tom Ziemke

AbstractInteraction between humans and robots will benefit if people have at least a rough mental model of what a robot knows about the world and what it plans to do. But how do we design human-robot interactions to facilitate this? Previous research has shown that one can change people’s mental models of robots by manipulating the robots’ physical appearance. However, this has mostly not been done in a user-centred way, i.e. without a focus on what users need and want. Starting from theories of how humans form and adapt mental models of others, we investigated how the participatory design method, PICTIVE, can be used to generate design ideas about how a humanoid robot could communicate. Five participants went through three phases based on eight scenarios from the state-of-the-art tasks in the RoboCup@Home social robotics competition. The results indicate that participatory design can be a suitable method to generate design concepts for robots’ communication in human-robot interaction.


2017 ◽  
Vol 2017 ◽  
pp. 1-16
Author(s):  
Enrique Fernández-Rodicio ◽  
Víctor González-Pacheco ◽  
José Carlos Castillo ◽  
Álvaro Castro-González ◽  
María Malfaz ◽  
...  

Projectors have become a widespread tool to share information in Human-Robot Interaction with large groups of people in a comfortable way. Finding a suitable vertical surface becomes a problem when the projector changes positions when a mobile robot is looking for suitable surfaces to project. Two problems must be addressed to achieve a correct undistorted image: (i) finding the biggest suitable surface free from obstacles and (ii) adapting the output image to correct the distortion due to the angle between the robot and a nonorthogonal surface. We propose a RANSAC-based method that detects a vertical plane inside a point cloud. Then, inside this plane, we apply a rectangle-fitting algorithm over the region in which the projector can work. Finally, the algorithm checks the surface looking for imperfections and occlusions and transforms the original image using a homography matrix to display it over the area detected. The proposed solution can detect projection areas in real-time using a single Kinect camera, which makes it suitable for applications where a robot interacts with other people in unknown environments. Our Projection Surfaces Detector and the Image Correction module allow a mobile robot to find the right surface and display images without deformation, improving its ability to interact with people.


2020 ◽  
Vol 17 (05) ◽  
pp. 2050021
Author(s):  
Grzegorz Ficht ◽  
Hafez Farazi ◽  
Diego Rodriguez ◽  
Dmytro Pavlichenko ◽  
Philipp Allgeuer ◽  
...  

For several years, high development and production costs of humanoid robots restricted researchers interested in working in the field. To overcome this problem, several research groups have opted to work with simulated or smaller robots, whose acquisition costs are significantly lower. However, due to scale differences and imperfect simulation replicability, results may not be directly reproducible on real, adult-sized robots. In this paper, we present the NimbRo-OP2X, a capable and affordable adult-sized humanoid platform aiming to significantly lower the entry barrier for humanoid robot research. With a height of 135[Formula: see text]cm and weight of only 19[Formula: see text]kg, the robot can interact in an unmodified, human environment without special safety equipment. Modularity in hardware and software allows this platform enough flexibility to operate in different scenarios and applications with minimal effort. The robot is equipped with an on-board computer with GPU, which enables the implementation of state-of-the-art approaches for object detection and human perception demanded by areas such as manipulation and human–robot interaction. Finally, the capabilities of the NimbRo-OP2X, especially in terms of locomotion stability and visual perception, are evaluated. This includes the performance at RoboCup 2018, where NimbRo-OP2X won all possible awards in the AdultSize class.


Author(s):  
Louise LePage

AbstractStage plays, theories of theatre, narrative studies, and robotics research can serve to identify, explore, and interrogate theatrical elements that support the effective performance of sociable humanoid robots. Theatre, including its parts of performance, aesthetics, character, and genre, can also reveal features of human–robot interaction key to creating humanoid robots that are likeable rather than uncanny. In particular, this can be achieved by relating Mori's (1970/2012) concept of total appearance to realism. Realism is broader and more subtle in its workings than is generally recognised in its operationalization in studies that focus solely on appearance. For example, it is complicated by genre. A realistic character cast in a detective drama will convey different qualities and expectations than the same character in a dystopian drama or romantic comedy. The implications of realism and genre carry over into real life. As stage performances and robotics studies reveal, likeability depends on creating aesthetically coherent representations of character, where all the parts coalesce to produce a socially identifiable figure demonstrating predictable behaviour.


2012 ◽  
Vol 3 (2) ◽  
pp. 68-83 ◽  
Author(s):  
David K. Grunberg ◽  
Alyssa M. Batula ◽  
Erik M. Schmidt ◽  
Youngmoo E. Kim

The recognition and display of synthetic emotions in humanoid robots is a critical attribute for facilitating natural human-robot interaction. The authors utilize an efficient algorithm to estimate the mood in acoustic music, and then use the results of that algorithm to drive movement generation systems to provide motions for the robot that are suitable for the music. This system is evaluated on multiple sets of humanoid robots to determine if the choice of robot platform or number of robots influences the perceived emotional content of the motions. Their tests verify that the authors’ system can accurately identify the emotional content of acoustic music and produce motions that convey a similar emotion to that in the audio. They also determine the perceptual effects of using different sized or different numbers of robots in the motion performances.


2012 ◽  
Vol 09 (04) ◽  
pp. 1250028 ◽  
Author(s):  
ELENA TORTA ◽  
RAYMOND H. CUIJPERS ◽  
JAMES F. JUOLA ◽  
DAVID VAN DER POL

Humanoid robots that share the same space with humans need to be socially acceptable and effective as they interact with people. In this paper we focus our attention on the definition of a behavior-based robotic architecture that (1) allows the robot to navigate safely in a cluttered and dynamically changing domestic environment and (2) encodes embodied non-verbal interactions: the robot respects the users personal space (PS) by choosing the appropriate distance and direction of approach. The model of the PS is derived from human–robot interaction tests, and it is described in a convenient mathematical form. The robot's target location is dynamically inferred through the solution of a Bayesian filtering problem. The validation of the overall behavioral architecture shows that the robot is able to exhibit appropriate proxemic behavior.


2019 ◽  
Author(s):  
Jairo Pérez-Osorio ◽  
Agnieszka Wykowska

In our daily lives, we need to predict and understand others’ behaviour in order to navigate through our social environment. Predictions concerning other humans’ behaviour usually refer to their mental states, such as beliefs or intentions. Such a predictive strategy is called adoption of the intentional stance. In this paper, we review literature related to the concept of intentional stance from the perspectives of philosophy, psychology, human development, culture and human-robot interaction. We propose that adopting the intentional stance might be a central factor in facilitating social attunement with artificial agents. The paper first reviews the theoretical considerations regarding the intentional stance, and examines literature related to the development of intentional stance across the life span. Subsequently, it discusses cultural norms as grounded in the intentional stance and finally, it focuses on the issue of adopting the intentional stance towards artificial agents, such as humanoid robots. At the dawn of the artificial intelligence era, the question of how (and when) we predict and explain robots’ behaviour by referring to mental states is of high interest. The paper concludes with the discussion of the ethical consequences of robots towards which we adopt the intentional stance, and sketches future directions in research on this topic.


Sign in / Sign up

Export Citation Format

Share Document