scholarly journals Hydro-Thermo-Mechanical Analysis of an Existing Gravity Dam Undergoing Alkali–Silica Reaction

2019 ◽  
Vol 4 (3) ◽  
pp. 55 ◽  
Author(s):  
Martina Colombo ◽  
Claudia Comi

The alkali–silica reaction is a chemical phenomenon that, by inducing expansion and the formation of cracks in concrete, can have a severe impact on the safety and functioning of existing concrete dams. Starting from a phenomenological two-phase isotropic damage model describing the degradation of concrete, the effects of alkali-silica reaction in an existing concrete gravity dam are evaluated and compared with real monitoring data. Considering the real temperature and humidity variations, the influence of both temperature and humidity are considered through two uncoupled diffusion analyses: a heat diffusion analysis and a moisture diffusion analysis. The numerical analyses performed with the two-phase damage model allow for prediction of the structural behaviour, both in terms of reaction extent and increase of crest displacements. The crest displacements are compared with the real monitoring data, where reasonably good agreement is obtained.

2010 ◽  
Vol 36 (4) ◽  
pp. 481-497 ◽  
Author(s):  
B. Phansri ◽  
S. Charoenwongmit ◽  
P. Warnitchai ◽  
D.H. Shin ◽  
K.H. Park

2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Chunli Yan ◽  
Jin Tu ◽  
Deyu Li ◽  
Shengshan Guo ◽  
Hui Liang

The paper focuses on the failure process and mechanism of the concrete gravity dam considering different nonlinear models under strong earthquakes. By taking a typical monolith of a concrete gravity dam as a case study, a comparative analysis of the failure process and mechanism of the dam considering the plastic damage model and the dynamic contact model, respectively, is performed using the seismic overload method. Moreover, the ultimate seismic capacity of the dam is evaluated for both of the nonlinear models. It is found that the ultimate seismic capacity of the dam is slightly different, but the failure process has significant distinctions in each model. And, the damage model is recommended when the conditions permit.


2019 ◽  
Vol 17 ◽  
pp. 717-726
Author(s):  
Z. Itam ◽  
S. Beddu ◽  
D. Mohammad ◽  
N.L.M. Kamal ◽  
N.A. Razak ◽  
...  

2018 ◽  
Vol 9 (5) ◽  
pp. 181
Author(s):  
Machach Laila ◽  
Mouzzoun Mouloud ◽  
Moustachi Oum El Khaiat ◽  
Taleb Ali

Sign in / Sign up

Export Citation Format

Share Document