scholarly journals High-Pressure Synthesis, Crystal Structure, and Photoluminescence Properties of β-Y2B4O9:Eu3+

Inorganics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 136
Author(s):  
Fuchs ◽  
Schröder ◽  
Heymann ◽  
Jüstel ◽  
Huppertz

A high-pressure/high-temperature experiment at 7.5 GPa and 1673 K led to the formation of the new compound βY2B4O9. In contrast to the already known polymorph αY2B4O9, which crystallizes in the space group C2/c, the reported structure could be solved via single-crystal Xray diffraction in the triclinic space group P1 (no. 2) and is isotypic to the already known lanthanide borates βDy2B4O9 and βGd2B4O9. Furthermore, the photoluminescence of an europium doped sample of βY2B4O9:Eu3+ (8%) was investigated.

2009 ◽  
Vol 64 (11-12) ◽  
pp. 1339-1344 ◽  
Author(s):  
Stephanie C. Neumair ◽  
Hubert Huppertz

The rare-earth borate Sc3B5O12 was synthesized under high-pressure / high-temperature conditions of 6 GPa and 1100 °C in a Walker-type multianvil apparatus. The single-crystal structure determination revealed an isotypy to RE3B5O12 (RE = Er-Lu). Sc3B5O12 crystallizes in the rare space group Pmna (Z = 4) with the parameters a = 1245.4(3), b = 443.46(9), c = 1222.1(2) pm, V = 0.675(1) nm3, R1 = 0.0520, and wR2 = 0.0860 (all data). The structure of Sc3B5O12 is composed of layers of condensed BO4 tetrahedra, separated by eight-fold coordinated scandium ions


2019 ◽  
Vol 74 (4) ◽  
pp. 357-363
Author(s):  
Daniela Vitzthum ◽  
Hubert Huppertz

AbstractThe mixed cation triel borate Ga4In4B15O33(OH)3 was synthesized in a Walker-type multianvil apparatus at high-pressure/high-temperature conditions of 12.5 GPa and 1300°C. Although the product could not be reproduced in further experiments, its crystal structure could be reliably determined via single-crystal X-ray diffraction data. Ga4In4B15O33(OH)3 crystallizes in the tetragonal space group I41/a (origin choice 2) with the lattice parameters a = 11.382(2), c = 15.244(2) Å, and V = 1974.9(4) Å3. The structure of the quaternary triel borate consists of a complex network of BO4 tetrahedra, edge-sharing InO6 octahedra in dinuclear units, and very dense edge-sharing GaO6 octahedra in tetranuclear units.


2020 ◽  
Vol 75 (6-7) ◽  
pp. 597-603
Author(s):  
Birgit Fuchs ◽  
Hubert Huppertz

AbstractThe non-centrosymmetric scandium borate ScB6O9(OH)3 was obtained through a high-pressure/high-temperature experiment at 6 GPa and 1473 K. Single-crystal X-ray diffraction revealed that the structure is isotypic to InB6O9(OH)3 containing borate triple layers separated by scandium layers. The compound crystallizes in the space group Fdd2 with the lattice parameters a = 38.935(4), b = 4.4136(4), and c = 7.6342(6) Å. Powder X-ray diffraction and vibrational spectroscopy were used to further characterize the compound and verify the proposed structure solution.


2010 ◽  
Vol 65 (11) ◽  
pp. 1311-1317 ◽  
Author(s):  
Stephanie C. Neumair ◽  
Reinhard Kaindl ◽  
Hubert Huppertz

The cobalt borate HP-CoB2O4 was synthesized from Co3O4 and B2O3 under high-pressure / high-temperature conditions of 6.5 GPa and 950 °C. The structure of HP-CoB2O4 is isotypic to HPNiB2O4 and β -FeB2O4, representing the third example of a borate, in which every BO4 tetrahedron shares a common edge with a second one. HP-CoB2O4 crystallizes in the space group C2/c (Z = 4) with the parameters a = 934.6(2), b = 562.0(2), c = 443.3(1) pm, β = 108.2(1)°, V = 0.2212(1) nm3, R1 = 0.0218, and wR2 = 0.0410 (all data). The structure consists of layers of BO4 tetrahedra, that are interconnected via strings of edge-sharing FeO6 octahedra


2015 ◽  
Vol 70 (4) ◽  
pp. 207-214 ◽  
Author(s):  
Daniela Vitzthum ◽  
Stefanie A. Hering ◽  
Lukas Perfler ◽  
Hubert Huppertz

AbstractOrthorhombic dysprosium orthogallate DyGaO3 and trigonal gallium orthoborate GaBO3 were synthesized in a Walker-type multianvil apparatus under high-pressure/high-temperature conditions of 8.5 GPa/1350 °C and 8 GPa/700 °C, respectively. Both crystal structures could be determined by single-crystal X-ray diffraction data collected at room temperature. The orthorhombic dysprosium orthogallate crystallizes in the space group Pnma (Z = 4) with the parameters a = 552.6(2), b = 754.5(2), c = 527.7(2) pm, V = 0.22002(8) nm3, R1 = 0.0309, and wR2 = 0.0662 (all data) and the trigonal compound GaBO3 in the space group R3̅c (Z = 6) with the parameters a = 457.10(6), c = 1419.2(3) pm, V = 0.25681(7) nm3, R1 = 0.0147, and wR2 = 0.0356 (all data).


1995 ◽  
Vol 50 (9) ◽  
pp. 1417-1418 ◽  
Author(s):  
Alexandra Atzesdorfer ◽  
Klaus-Jürgen Range

Single crystals of sodium metaperrhenate, NaReO4, have been obtained by oxidation of rhenium metal with sodium nitrate under high pressure- high temperature conditions (modified Belttype apparatus, 4 kbar, 400 °C, Au-capsules). The crystals are tetragonal, space group I41/a, with a = 5.3654(4), c = 11.732(2) Å and Z = 4. The structure was refined to R - 0.026, Rw = 0.013 for 382 unique, absorption-corrected reflections. The scheelite-type structure for NaReO4, proposed by Beintema in 1937, could be confirmed. It consists of isolated ReO4 tetrahedra (Re-O= 1.728(2) Å ), connected by NaOs dodecahedra (<Na- O > = 2.582(2) Å).


1975 ◽  
Vol 30 (3-4) ◽  
pp. 277-278 ◽  
Author(s):  
Hans-L. Keller ◽  
Karl-H. Meier ◽  
Hk. Müller-Buschbaum

Single crystals of SrPbO3 could be prepared by oxygen-high-pressure-synthesis (PO2 &gt; 3500 at, t = 450°C). Single crystal X-ray diffraction data confirm the space group D2h16-Pnma. SrPbO3 belongs to the orthorhombic distorted Perowskit type with a = 5.964, b = 8.320, c = 5.860 Å. The atomic positions were refined.


1979 ◽  
Vol 34 (3) ◽  
pp. 524 ◽  
Author(s):  
Jürgen Evers ◽  
Gilbert Oehlinger ◽  
Armin Weiss

Abstract After a high pressure -high temperature treatment of orthorhombic SrGe2 (BaSi2 type of structure) a trigonal polymorph (EuGe2 type of structure) is obtained: space group P3̄m 1; a - 410.4 pm, c - 516.5 pm; Z - 1; zGe = 0.406.


2007 ◽  
Vol 62 (6) ◽  
pp. 759-764 ◽  
Author(s):  
Almut Haberer ◽  
Gunter Heymann ◽  
Hubert Huppertz

The cerium meta-oxoborate δ -Ce(BO2)3 was synthesized under high-pressure / high-temperature conditions of 3.5 GPa and 1050 °C in a Walker-type multianvil apparatus. The crystal structure was determined by single crystal X-ray diffraction data, collected at r. t. The compound crystallizes monoclinicly in the space group P21/c with the lattice parameters a = 422.52(8), b = 1169.7(2), c = 725.2(2) pm, and β = 91.33(3)°. The structure is isotypic to the recently published high-pressure phase δ -La(BO2)3, consisting exclusively of corner sharing [BO4]5− tetrahedra


2009 ◽  
Vol 64 (9) ◽  
pp. 1032-1040 ◽  
Author(s):  
Stefanie A. Hering ◽  
Hubert Huppertz

Monoclinic holmium sesquioxide B-Ho2O3 and orthorhombic holmium orthogallate HoGaO3 were synthesized in a Walker-type multianvil apparatus under high-pressure / high-temperature conditions of 11.5 GPa / 1250 °C and 7.5 GPa / 1250 °C, respectively. Both crystal structures could be determined by single-crystal X-ray diffraction data, collected at r. t. The monoclinic holmium oxide crystallizes in the space group C2/m (Z = 6) with the parameters a = 1394.7(3), b = 350.83(7), c = 865.6(2) pm, β = 100.23(3)°, R1 = 0.0517, wR2 = 0.1130 (all data), and the orthorhombic compound HoGaO3 in Pnma (Z = 4) with the parameters a = 553.0(2), b = 753.6(2), c = 525.4(2) pm, R1 = 0.0222, and wR2 = 0.0303 (all data).


Sign in / Sign up

Export Citation Format

Share Document