scholarly journals RNA Interference-Mediated Knockdown of Male Fertility Genes in the Queensland Fruit Fly Bactrocera tryoni (Diptera: Tephritidae)

Insects ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 96 ◽  
Author(s):  
Carlos Cruz ◽  
Alison Tayler ◽  
Steve Whyard

The Queensland fruit fly, Bactrocera tryoni, is Australia’s most important horticultural pest. The Sterile Insect Technique (SIT) has been used to control this species for decades, using radiation to sterilize males before field-release. This method of sterilization can potentially reduce the insects’ abilities to compete for mates. In this study, RNA interference (RNAi) techniques were examined for their potential to sterilize male B. tryoni without adversely affecting mating competitiveness. B. tryoni adults were injected or fed double-stranded RNAs (dsRNAs) targeting spermatogenesis genes (tssk1, topi and trxt); quantitative reverse-transcriptase PCR analyses confirmed that transcript levels were reduced 60–80% for all three genes following injections. Feeding produced a significant gene knockdown for tssk1 and trxt after three days, but interestingly, two genes (trxt and topi) produced an excess of transcripts after 10 days of feeding. Despite these fluctuations in transcript levels, all three dsRNAs impacted the fecundity of treated males, with tssk1- and topi-dsRNA-treated males producing 75% fewer viable offspring than the negative controls. Mating competition assays demonstrated that dsRNA-treated males can actively compete with untreated males. These findings suggest that RNAi technology could serve as an alternative to radiation as a means of sterilizing these insects in an SIT program.

2021 ◽  
Author(s):  
Alan Meats

Abstract B. tryoni, the Queensland fruit fly, is the most costly horticultural pest in Australia and has invaded several countries in the surrounding region (White and Elson-Harris, 1994). It has the potential to spread to many places around the world because of its wide climatic and host range (Meats 1989b; Sutherst et al., 2000) and a tendency to be carried by human travellers at the larval stage inside infested fruit. B. tryoni is a very serious pest of a wide variety of fruits throughout its range. Damage levels can be anything up to 100% of unprotected fruit.


Open Biology ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 190198 ◽  
Author(s):  
Alison Tayler ◽  
Daniel Heschuk ◽  
David Giesbrecht ◽  
Jae Yeon Park ◽  
Steve Whyard

RNA interference (RNAi) in insects is routinely used to ascertain gene function, but also has potential as a technology to control pest species. For some insects, such as beetles, ingestion of small quantities of double-stranded RNA (dsRNA) is able to knock down a targeted gene's expression. However, in other species, ingestion of dsRNA can be ineffective owing to the presence of nucleases within the gut, which degrade dsRNA before it reaches target cells. In this study, we observed that nucleases within the gut of the Queensland fruit fly ( Bactrocera tryoni ) rapidly degrade dsRNA and reduce RNAi efficacy. By complexing dsRNA with liposomes within the adult insect's diet, RNAi-mediated knockdown of a melanin synthesis gene, yellow , was improved significantly, resulting in strong RNAi phenotypes. RNAi efficiency was also enhanced by feeding both larvae and adults for several days on dsRNAs that targeted two different dsRNase gene transcripts. Co-delivery of both dsRNase-specific dsRNAs and yellow dsRNA resulted in almost complete knockdown of the yellow transcripts. These findings show that the use of liposomes or co-feeding of nuclease-specific dsRNAs significantly improves RNAi inhibition of gene expression in B. tryoni and could be a useful strategy to improve RNAi-based control in other insect species.


Author(s):  

Abstract A new distribution map is provided for Dacus tryoni[Bactrocera tryoni] (Frogg.) (Dipt., Trypetidae) (Queensland Fruit-fly) Hosts: Many deciduous and subtropical fruits. Information is given on the geographical distribution in AUSTRALIA, New South Wales, Queensland, South Australia, Victoria.


2019 ◽  
Vol 72 ◽  
pp. 279
Author(s):  
David A.J. Teulon ◽  
John M. Kean ◽  
Karen F. Armstrong

Fruit flies (Family Tephritidae), in particular the Queensland fruit fly (Bactrocera tryoni; QFF), areone of the biggest biosecurity risks for New Zealand horticulture. New Zealand has one of the bestscience-based biosecurity systems in the world, based on years of experience and sound research. Theintroduction of fruit flies to New Zealand is now well managed in commercial fruit imports, but the riskis rising from growing trade and travel and, in the case of QFF, climatic adaptation and spread to moresouthern localities. Smarter solutions are continually needed to manage this increasing risk, and to dealwith such pests when they arrive. We present a brief summary of current and anticipated research aimedat reducing the likelihood of entry into New Zealand and/or minimising the impact for the fruit flyspecies of greatest threat to New Zealand. Research spans risk assessment, pathway risk management,diagnostics, surveillance and eradication.


Author(s):  
Sung-Suk Chae ◽  
Ji-Hye Paik ◽  
Jonathan Shubert-Coleman ◽  
Henry Furneaux ◽  
Timothy Hla

Life ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 263
Author(s):  
Laura Rigon ◽  
Nicole Kucharowski ◽  
Franka Eckardt ◽  
Reinhard Bauer

Mucopolysaccharidosis type II (MPS II) is a lysosomal storage disorder that occurs due to the deficit of the lysosomal enzyme iduronate 2-sulfatase (IDS) that leads to the storage of the glycosaminoglycan heparan- and dermatan-sulfate in all organs and tissues. It is characterized by important clinical features and the severe form presents with a heavy neurological involvement. However, almost nothing is known about the neuropathogenesis of MPS II. To address this issue, we developed a ubiquitous, neuronal, and glial-specific knockdown model in Drosophila melanogaster by using the RNA interference (RNAi) approach. Knockdown of the Ids/CG12014 gene resulted in a significant reduction of the Ids gene expression and enzymatic activity. However, glycosaminoglycan storage, survival, molecular markers (Atg8a, Lamp1, Rab11), and locomotion behavior were not affected. Even strongly reduced, IDS-activity was enough to prevent a pathological phenotype in a MPS II RNAi fruit fly. Thus, a Drosophila MPS II model requires complete abolishment of the enzymatic activity.


Sign in / Sign up

Export Citation Format

Share Document