scholarly journals Generalizability of Deep Learning Models for Caries Detection in Near-Infrared Light Transillumination Images

2021 ◽  
Vol 10 (5) ◽  
pp. 961 ◽  
Author(s):  
Agnes Holtkamp ◽  
Karim Elhennawy ◽  
José E. Cejudo Grano de Oro ◽  
Joachim Krois ◽  
Sebastian Paris ◽  
...  

Objectives: The present study aimed to train deep convolutional neural networks (CNNs) to detect caries lesions on Near-Infrared Light Transillumination (NILT) imagery obtained either in vitro or in vivo and to assess the models’ generalizability. Methods: In vitro, 226 extracted posterior permanent human teeth were mounted in a diagnostic model in a dummy head. Then, NILT images were generated (DIAGNOcam, KaVo, Biberach), and images were segmented tooth-wise. In vivo, 1319 teeth from 56 patients were obtained and segmented similarly. Proximal caries lesions were annotated pixel-wise by three experienced dentists, reviewed by a fourth dentist, and then transformed into binary labels. We trained ResNet classification models on both in vivo and in vitro datasets and used 10-fold cross-validation for estimating the performance and generalizability of the models. We used GradCAM to increase explainability. Results: The tooth-level prevalence of caries lesions was 41% in vitro and 49% in vivo, respectively. Models trained and tested on in vivo data performed significantly better (mean ± SD accuracy: 0.78 ± 0.04) than those trained and tested on in vitro data (accuracy: 0.64 ± 0.15; p < 0.05). When tested in vitro, the models trained in vivo showed significantly lower accuracy (0.70 ± 0.01; p < 0.01). Similarly, when tested in vivo, models trained in vitro showed significantly lower accuracy (0.61 ± 0.04; p < 0.05). In both cases, this was due to decreases in sensitivity (by −27% for models trained in vivo and −10% for models trained in vitro). Conclusions: Using in vitro setups for generating NILT imagery and training CNNs comes with low accuracy and generalizability. Clinical significance: Studies employing in vitro imagery for developing deep learning models should be critically appraised for their generalizability. Applicable deep learning models for assessing NILT imagery should be trained on in vivo data.

2020 ◽  
Vol 6 (44) ◽  
pp. eabb6165
Author(s):  
Lukas Pfeifer ◽  
Nong V. Hoang ◽  
Maximilian Scherübl ◽  
Maxim S. Pshenichnikov ◽  
Ben L. Feringa

Light-controlled artificial molecular machines hold tremendous potential to revolutionize molecular sciences as autonomous motion allows the design of smart materials and systems whose properties can respond, adapt, and be modified on command. One long-standing challenge toward future applicability has been the need to develop methods using low-energy, low-intensity, near-infrared light to power these nanomachines. Here, we describe a rotary molecular motor sensitized by a two-photon absorber, which efficiently operates under near-infrared light at intensities and wavelengths compatible with in vivo studies. Time-resolved spectroscopy was used to gain insight into the mechanism of energy transfer to the motor following initial two-photon excitation. Our results offer prospects toward in vitro and in vivo applications of artificial molecular motors.


ACS Nano ◽  
2013 ◽  
Vol 7 (10) ◽  
pp. 8516-8528 ◽  
Author(s):  
Yi-Hsin Chien ◽  
Yu-Lin Chou ◽  
Shu-Wen Wang ◽  
Shu-Ting Hung ◽  
Min-Chiau Liau ◽  
...  

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Hongwei Zhao ◽  
Hasaan Hayat ◽  
Xiaohong Ma ◽  
Daguang Fan ◽  
Ping Wang ◽  
...  

Abstract Artificial Intelligence (AI) algorithms including deep learning have recently demonstrated remarkable progress in image-recognition tasks. Here, we utilized AI for monitoring the expression of underglycosylated mucin 1 (uMUC1) tumor antigen, a biomarker for ovarian cancer progression and response to therapy, using contrast-enhanced in vivo imaging. This was done using a dual-modal (magnetic resonance and near infrared optical imaging) uMUC1-specific probe (termed MN-EPPT) consisted of iron-oxide magnetic nanoparticles (MN) conjugated to a uMUC1-specific peptide (EPPT) and labeled with a near-infrared fluorescent dye, Cy5.5. In vitro studies performed in uMUC1-expressing human ovarian cancer cell line SKOV3/Luc and control uMUC1low ES-2 cells showed preferential uptake on the probe by the high expressor (n = 3, p < .05). A decrease in MN-EPPT uptake by SKOV3/Luc cells in vitro due to uMUC1 downregulation after docetaxel therapy was paralleled by in vivo imaging studies that showed a reduction in probe accumulation in the docetaxel treated group (n = 5, p < .05). The imaging data were analyzed using deep learning-enabled segmentation and quantification of the tumor region of interest (ROI) from raw input MRI sequences by applying AI algorithms including a blend of Convolutional Neural Networks (CNN) and Fully Connected Neural Networks. We believe that the algorithms used in this study have the potential to improve studying and monitoring cancer progression, amongst other diseases.


Small ◽  
2008 ◽  
Vol 4 (7) ◽  
pp. 1001-1007 ◽  
Author(s):  
Takuro Niidome ◽  
Yasuyuki Akiyama ◽  
Kohei Shimoda ◽  
Takahito Kawano ◽  
Takeshi Mori ◽  
...  

2020 ◽  
Vol 32 (4) ◽  
pp. 187-193
Author(s):  
Ayşe Dündar ◽  
Mehmet Ertuğrul Çiftçi ◽  
Özlem İşman ◽  
Ali Murat Aktan

Sign in / Sign up

Export Citation Format

Share Document