scholarly journals Nitric Oxide and Biological Mediators in Pediatric Chronic Rhinosinusitis and Asthma

2019 ◽  
Vol 8 (11) ◽  
pp. 1783 ◽  
Author(s):  
Valentina Agnese Ferraro ◽  
Stefania Zanconato ◽  
Eugenio Baraldi ◽  
Silvia Carraro

Background: In the context of the so-called unified airway theory, chronic rhinosinusitis (CRS) and asthma may coexist. The inflammation underlying these conditions can be studied through the aid of biomarkers. Main body: We described the main biological mediators that have been studied in pediatric CRS and asthma, and, according to the available literature, we reported their potential role in the diagnosis and management of these conditions. As for CRS, we discussed the studies that investigated nasal nitric oxide (nNO), pendrin, and periostin. As for asthma, we discussed the role of fractional exhaled nitric oxide (feNO), the role of periostin, and that of biological mediators measured in exhaled breath condensate (EBC) and exhaled air (volatile organic compounds, VOCs). Conclusion: Among non-invasive biomarkers, nNO seems the most informative in CRS and feNO in asthma. Other biological mediators seem promising, but further studies are needed before they can be applied in clinical practice.

2017 ◽  
Vol 53 (3) ◽  
pp. 120-127
Author(s):  
Alfredo Guillen-del Castillo ◽  
Sara Sánchez-Vidaurre ◽  
Carmen P. Simeón-Aznar ◽  
María J. Cruz ◽  
Vicente Fonollosa-Pla ◽  
...  

2016 ◽  
Vol 70 (3) ◽  
Author(s):  
M. Malerba ◽  
B. Ragnoli ◽  
M. Corradi

Cigarette smoking is the major factor implicated in the pathogenesis of chronic obstructive pulmonary disease (COPD), despite the fact that only susceptible smoking subjects develop this respiratory disease. In the last few years non–invasive techniques such as induced sputum (IS), exhaled nitric oxide (eNO) measurement and exhaled breath condensate (EBC) collection have been successfully established revealing an inflammatory status and oxidative stress indicators in the airways involved in the pathogenesis of several pulmonary diseases. Using these new non-invasive experimental tools recently, several efforts have been made to find new biomarkers in order to assess and monitor early lung damage induced by smoking. Tobacco smoke can acutely reduce eNO levels in healthy smokers and non-smoker subjects so it can play a role in anti-smoking programmes; its increase can be a positive parameter for subjects who are going to stop cigarette smoking and at the same time be used as an anti-smoking indicator. It can be useful to investigate the mechanism of cigarette-induced lung damage in an experimental setting and may potentially be useful for assessing of Environmental Tobacco Smoke (ETS) effects. Markers of oxidative stress have been detected in induced sputum of COPD subjects even though only few studies investigated the use of induced sputum to study smoke effects on the lungs of healthy subjects. Exhaled breath condensate (EBC) obtained by cooling exhaled air under conditions of spontaneous breathing is a promising biological fluid that could provide a real-time assessment of pulmonary pathobiology. The analysis of induced sputum and of exhaled air is feasible and non-invasive, can be useful to identify new biomarkers of exposure or susceptibility in COPD patients to enhance the understanding of airways changes due to current smoking and may be useful to find new biomarkers in order to assess and monitor early lung damage induced by smoke in order to prevent the progression of obstructive disease.


2021 ◽  
Vol 40 (4) ◽  
pp. S63
Author(s):  
E. Ibáñez-Martínez ◽  
M. López-Nogueroles ◽  
M. Alcoriza-Balaguer ◽  
I. Pérez ◽  
M. Roca-Marugán ◽  
...  

2015 ◽  
Vol 74 (Suppl 2) ◽  
pp. 587.1-587 ◽  
Author(s):  
A. Guillen-Del Castillo ◽  
S. Sánchez-Vidaurre ◽  
C.P. Simeόn-Aznar ◽  
M.J. Cruz ◽  
V. Fonollosa-Pla ◽  
...  

2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
A. Shoemark ◽  
R. Wilson

Bronchiectasis is characterised by neutrophilic bronchial inflammation. Direct measurement of lung inflammation would be useful to assess disease activity, guide need for treatment, and monitor response. The aim of this study was to test whether exhaled breath condensate (EBC) pH, a simple noninvasive test, provides a clinically useful measure of inflammation in the lungs of patients with bronchiectasis. 96 consecutively referred patients were studied when clinically stable, 20 followed up over two years, and a further 22 patients seen during an exacerbation. Subjects breathed tidally for 10 minutes into a condensing chamber (Ecoscreen, Erich Jaeger, Hoechberg, Germany). pH in EBC was measured immediately using a pH probe. In a representative group of 25 patients samples were deaerated with argon gas. This was to control for variations in pH ex vivo by removing CO2. EBC was acidic in bronchiectasis patients () compared to controls () and primary ciliary dyskinesia patients (). pH was related to lung volume but not disease severity. Repeated measures show EBC pH changes with symptoms. EBC is further acidified during an exacerbation of bronchiectasis (), this acidification persists following treatment (). EBC pH is not sufficiently sensitive or specific to monitor patients' health status or provide information to inform acute treatment decisions.


2012 ◽  
Vol 61 (4) ◽  
pp. 247-256 ◽  
Author(s):  
Ahmed Elhefny ◽  
Sahar Mourad ◽  
Tamer Said Morsi ◽  
Maher Abdelnabi Kamel ◽  
Haydi Moustafa Mahmoud

2012 ◽  
Vol 194 (2) ◽  
pp. 222-228 ◽  
Author(s):  
Virginie de Broucker ◽  
Sidi Mohamed Hassoun ◽  
Sébastien Hulo ◽  
Nathalie Chérot-Kornobis ◽  
Rémi Nevière ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document