scholarly journals Advances on Dye-Sensitized Solar Cells (DSSCs) Nanostructures and Natural Colorants: A Review

2021 ◽  
Vol 5 (11) ◽  
pp. 288
Author(s):  
José A. Castillo-Robles ◽  
Enrique Rocha-Rangel ◽  
José A. Ramírez-de-León ◽  
Frida C. Caballero-Rico ◽  
Eddie N. Armendáriz-Mireles

Human beings are attempting to take advantage of renewable natural resources by using solar cells. These devices take the sun’s radiation and convert it into electrical energy. The issue with traditional silicon-based solar cells is their manufacturing costs and environmental problems. For this reason, alternatives have been developed within the solar cell field. One of these alternatives is the dye-sensitized solar cell (DSSC), also known as Grätzel solar cells. DSSCs are a type of solar cell that mimics photosynthesis. They have a photoanode, which is formed by a semiconductor film sensitized with a dye. Some of their advantages include low-cost manufacturing, eco-friendly materials use, and suitability for most environments. This review discusses four important aspects, with two related to the dye, which can be natural or synthetic. Herein, only natural dyes and their extraction methods were selected. On the other hand, this paper discusses the nanostructures used for DSSCs, the TiO2 nanostructure being the most reported; it recently reached an efficiency level of 10.3%. Finally, a review on the novelties in DSSCs technology is presented, where it is observed that the use of Catrin protein (cow brain) shows 1.45% of efficiency, which is significantly lower if compared to Ag nanoparticles doped with graphene that report 9.9% efficiency.

2014 ◽  
pp. 319-346
Author(s):  
Salahuddin Qazi ◽  
Farhan A. Qazi

Solar radiation is plentiful and a clean source of power. However, despite the first practical use of silicon based solar cell more than 50 years ago, it has not been exploited to its full potential due to the high cost of electrical conversion on a per Watt basis. Many new kinds of photovoltaic cells such as multi-junction solar cells dye –sensitized solar cells and organic solar cell incorporating element of nanotechnology have been proposed to increase the efficiency and reduce the cost. Nanotechnology, in the form of quantum dots, nanorods, nanotubes, and grapheme, has been shown to enhance absorption of sunlight, makes low cost flexible solar panels and increases the efficiency of photovoltaic cells. The chapter reviews the state of current photovoltaic cells and challenges it presents. It also discusses the use of nanotechnology in the application of photovoltaic cells and future research directions to improve the efficiency of solar cells and reduce the cost.


Author(s):  
Salahuddin Qazi ◽  
Farhan A. Qazi

Solar radiation is plentiful and a clean source of power. However, despite the first practical use of silicon based solar cell more than 50 years ago, it has not been exploited to its full potential due to the high cost of electrical conversion on a per Watt basis. Many new kinds of photovoltaic cells such as multi-junction solar cells dye –sensitized solar cells and organic solar cell incorporating element of nanotechnology have been proposed to increase the efficiency and reduce the cost. Nanotechnology, in the form of quantum dots, nanorods, nanotubes, and grapheme, has been shown to enhance absorption of sunlight, makes low cost flexible solar panels and increases the efficiency of photovoltaic cells. The chapter reviews the state of current photovoltaic cells and challenges it presents. It also discusses the use of nanotechnology in the application of photovoltaic cells and future research directions to improve the efficiency of solar cells and reduce the cost.


2021 ◽  
Vol 1028 ◽  
pp. 151-156
Author(s):  
Ayunita Chintia Celline ◽  
Astria Yuliani Subagja ◽  
Sri Suryaningsih ◽  
Annisa Aprilia ◽  
Lusi Safriani

Dye-sensitized solar cells (DSSC) are solar cells that has a great potential to be applied as renewable energy conversion. The major advantages of DSSC are the ease of fabrication process and low cost of production. Despite of these advantages, the efficiency of DSSC for converting light into electricity is still low. It is due to charge recombination in DSSC which limits the photoanode performance. Numerous efforts has been carried out to increase the efficiency of DSSC, one of which is by adding reduced graphene oxide (rGO) to titanium oxide (TiO2) to obtain TiO2-rGO nanocomposite. In this study, the synthesis of TiO2-rGO nanocomposites was carried out with concentration of rGO are 0.6, 0.8, and 1.0 wt% to amount of TiO2. We have done some characterizations to confirm the result of synthesized TiO2-rGO. UV-Vis measurement shows the addition of rGO has widened the absorption up to 400 nm. The FT-IR spectrum confirms that the rGO peaks appears at wavelength of 1400, 1600, dan 1700 cm-1 which exhibited the vibration C-O, C=C, and C=O stretching from COOH groups, respectively. The highest efficiency of DSSC with photoanode TiO2-rGO nanocomposite is 0.09% which was obtained from 0.8 wt% of rGO.


2012 ◽  
Vol 545 ◽  
pp. 405-409 ◽  
Author(s):  
Nurul Huda Yusoff ◽  
Mohamad Firdaus Rosle ◽  
Surani Buniran

Dye sensitized solar cell (DSSC) is a new class of low-cost solar cell, that belongs to third generation solar cells in thin film based. It is based on a semiconductor formed between a photo-sensitized anode and an electrolyte, known as photoelectrochemical system. A lot of research has been conducted due to their interesting potential for low-cost, lightweight, disposable and having cell efficiency up to 10%. This paper reports the fabrication of dye sensitized solar cells using TiO2 nanoparticles and chlorophyll as active layer. TiO2 nanoparticles were prepared by sol-gel method while the chlorophyll was extracted from Pandanus amaryllifolius (Pandan leaf). TiO2 film was prepared on ITO coated glass using dip coating technique and then immersed overnight in the chlorophyll solution. An electrolyte solution composed of PC-LiClO4 was injected into the cell before sealed using glass that was coated with Pt as top electrode. An active area of 4.48 cm2 was fabricated by black masking the front side. The performance of the device was studied by observing the current-voltage characteristics of the device in dark at ambient temperature and under illumination of 100 mW/cm2 light. It was found that the device showed rectifier property in the dark and able to generate electrical current under light.


2017 ◽  
Vol 2017 ◽  
pp. 1-31 ◽  
Author(s):  
Carmen Cavallo ◽  
Francesco Di Pascasio ◽  
Alessandro Latini ◽  
Matteo Bonomo ◽  
Danilo Dini

Since O’Regan and Grätzel’s first report in 1991, dye-sensitized solar cells (DSSCs) appeared immediately as a promising low-cost photovoltaic technology. In fact, though being far less efficient than conventional silicon-based photovoltaics (being the maximum, lab scale prototype reported efficiency around 13%), the simple design of the device and the absence of the strict and expensive manufacturing processes needed for conventional photovoltaics make them attractive in small-power applications especially in low-light conditions, where they outperform their silicon counterparts. Nanomaterials are at the very heart of DSSC, as the success of its design is due to the use of nanostructures at both the anode and the cathode. In this review, we present the state of the art for bothn-type andp-type semiconductors used in the photoelectrodes of DSSCs, showing the evolution of the materials during the 25 years of history of this kind of devices. In the case ofp-type semiconductors, also some other energy conversion applications are touched upon.


2020 ◽  
Vol 12 (18) ◽  
pp. 7598
Author(s):  
Ruwaida Asyikin Abu Talip ◽  
Wan Zaireen Nisa Yahya ◽  
Mohamad Azmi Bustam

Exploration of renewable energy, such as solar energy, is imminent not only to cater to the escalating energy demand but also to address the uprising environmental issues due to heavy usage of non-renewable fossil fuel. The dye-sensitized solar cells (DSSCs) which are considered as the third-generation solar cells, have a huge potential to be commercialized due to their low cost, simplicity in fabrication, and promising photon-to-electrical energy conversion efficiency. Nevertheless, a high cell efficiency can only be achieved when an organic solvent is incorporated into the formulation of the electrolyte, which is prone to evaporation and leakage. As a result, DSSCs become unsuitable for long-run usage due to thermal instability in the electrolyte. The early intention of incorporating ionic liquids (ILs) into the electrolyte was to curb the abovementioned problem and to enable the DSSCs to function as a sustainable energy device. As such, this article briefly reviews how ILs have been incorporated into the electrolyte formulation and the extent of how the ILs can affect the cell efficiency in various electrolyte states. The role of the ILs in a range of electrolytes is also highlighted. This sheds light on the true purpose of introducing ILs into DSSC electrolyte, which is to enhance the ionicity of the electrolyte.


2010 ◽  
Vol 663-665 ◽  
pp. 848-851
Author(s):  
Jian Sun ◽  
Yan Xiang Wang ◽  
Min Xu ◽  
Ting Li Ma ◽  
Xue Yun Fan

Dye-sensitized solar cells (DSSC) are currently attracting widespread interest for the conversion of sunlight into electricity because of their low cost and high efficiency. In these cells, photo-anode is one of the key components for high power conversion efficiencies. In this paper, TiO2 nanopowders were prepared by the non-hydrolytic sol-gel method using TiCl4 as precursor, absolute ethanol and isopropanol as oxygen donor. Several different TiO2 nanopowders were used to fabricate TiO2 solar cells, and properties of TiO2 solar cells were characterized. The solar cell prepared with grainsize 50~80nm TiO2 nanopowders generated a short-circuit photocurrent of 13.17 mA/cm2, an open-circuit photovoltage of 789 mV, a fill factor of 69.8% and the efficiency of 7.25% under the light intensity of 100 mW/cm2.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2748
Author(s):  
Congjun Cao ◽  
Tianning Yang ◽  
Guangxue Chen

Although the price of dye-sensitized solar cells is lower than other solar cells, they still contain some high-cost materials, such as transparent conductive substrates, dyes (ruthenium dyes, organic dyes, etc.), and platinum counter electrodes. To solve this problem, a dye-sensitized solar cell based on hibiscus leaching solution and carbon black–silver electrodes was prepared by screen printing. The prepared low-cost dye-sensitized solar cells were flexible. The open-circuit voltage (Voc) of the obtained dye-sensitized solar cell is 0.65 V, the current density (Jsc) is 90 μA/cm², and the fill factor (FF) is 0.241.


2020 ◽  
pp. 16-21
Author(s):  
PHITCHAPHORN KHAMMEE ◽  
YUWALEE UNPAPROM ◽  
UBONWAN SUBHASAEN ◽  
RAMESHPRABU RAMARAJ

Recently, dye-sensitized solar cells (DSSC) have concerned significant attention attributable to their material preparation process, architectural and environmental compatibility, also low cost and effective photoelectric conversion efficiency. Therefore, this study aimed to use potential plant materials for DSSC. This research presents the extraction of natural pigments from yellow cotton flowers (Cochlospermum regium). In addition, the natural pigments were revealed that outstanding advantages, including a wide absorption range (visible light), easy extraction method, safe, innocuous pigments, inexpensive, complete biodegradation and ecofriendly. Methanol was used as a solvent extraction for the yellow cotton flower. The chlorophylls and carotenoid pigments extractions were estimated by a UV-visible spectrometer. The chlorophyll-a, chlorophyll-b, and carotenoid yield were 0.719±0.061 µg/ml, 1.484±0.107 µg/ml and 7.743±0.141 µg/ml, respectively. Thus, this study results suggested that yellow cotton flowers containing reasonable amounts appealable in the DSSC production.


Nanoscale ◽  
2014 ◽  
Vol 6 (23) ◽  
pp. 14433-14440 ◽  
Author(s):  
Sheng-qi Guo ◽  
Tian-zeng Jing ◽  
Xiao Zhang ◽  
Xiao-bing Yang ◽  
Zhi-hao Yuan ◽  
...  

In this work, we report the synthesis of mesoporous Bi2S3 nanorods under hydrothermal conditions without additives, and investigated their catalytic activities as the CE in DSCs by I–V curves and tested conversion efficiency.


Sign in / Sign up

Export Citation Format

Share Document