scholarly journals Automated Harmonic Signal Removal Technique Using Stochastic Subspace-Based Image Feature Extraction

2020 ◽  
Vol 6 (3) ◽  
pp. 10
Author(s):  
Muhammad Danial Bin Abu Hasan ◽  
Zair Asrar Bin Ahmad ◽  
Mohd Salman Leong ◽  
Lim Meng Hee

This paper presents automated harmonic removal as a desirable solution to effectively identify and discard the harmonic influence over the output signal by neglecting any user-defined parameter at start-up and automatically reconstruct back to become a useful output signal prior to system identification. Stochastic subspace-based algorithms (SSI) methods are the most practical tool due to the consistency in modal parameters estimation. However, it will be problematic when applied to structures with rotating machines and the presence of harmonic excitations. Difficulties arise when automating this procedure without any human interaction and the problem is still unresolved because stochastic subspace-based algorithms (SSI) methods still require parameters (the maximum within-cluster distance) that are compulsory to be defined at start-up for each analysis of the dataset. Thus, the use of image-based feature extraction for clustering and classification of harmonic components and structural poles directly from a stabilization diagram and for modal system identification is the focus of the present paper. As a fundamental necessary condition, the algorithm has been assessed first from computed numerical responses and then applied to the experimental dataset with the presence of harmonic excitation. Results of the proposed approach for estimating modal parameters demonstrated very high accuracy and exhibited consistent results before and after removing harmonic components from the response signal.

2021 ◽  
pp. 147592172110360
Author(s):  
Erhua Zhang ◽  
Di Wu ◽  
Deshan Shan

Subspace-based system identification algorithms have been developed as an advanced technique for performing modal analysis. We introduce a novel tensor subspace-based algorithm to identify the time-varying modal parameters of bridge structures. A new time dimension is introduced in the traditional Hankel matrix, and a mathematical model of tensor subspace decomposition is established. Combined with the stabilization diagram, tensor parallel factor decomposition is used to estimate the frequencies, mode shapes, and modal damping ratios. The effectiveness of the proposed algorithm is validated by comparing it with the classical sliding-window–based stochastic subspace algorithm on a model cable-stayed bridge dynamic test. The proposed algorithm is further applied to process the dynamic responses of a real bridge health monitoring system to identify its time-varying modal frequencies. Our results demonstrated that the proposed algorithm significantly reduces computational efforts and extends the range of solution ideas for future out-only time-varying system identification problems.


2014 ◽  
Vol 226 (6) ◽  
pp. 1673-1687 ◽  
Author(s):  
Mousa Rezaee ◽  
Gholamreza Fattahi Yam

2012 ◽  
Author(s):  
Hua Yang ◽  
Idaku Ishii ◽  
Takeshi Takaki

Sign in / Sign up

Export Citation Format

Share Document