scholarly journals A Survey of Brain Tumor Segmentation and Classification Algorithms

2021 ◽  
Vol 7 (9) ◽  
pp. 179
Author(s):  
Erena Siyoum Biratu ◽  
Friedhelm Schwenker ◽  
Yehualashet Megersa Ayano ◽  
Taye Girma Debelee

A brain Magnetic resonance imaging (MRI) scan of a single individual consists of several slices across the 3D anatomical view. Therefore, manual segmentation of brain tumors from magnetic resonance (MR) images is a challenging and time-consuming task. In addition, an automated brain tumor classification from an MRI scan is non-invasive so that it avoids biopsy and make the diagnosis process safer. Since the beginning of this millennia and late nineties, the effort of the research community to come-up with automatic brain tumor segmentation and classification method has been tremendous. As a result, there are ample literature on the area focusing on segmentation using region growing, traditional machine learning and deep learning methods. Similarly, a number of tasks have been performed in the area of brain tumor classification into their respective histological type, and an impressive performance results have been obtained. Considering state of-the-art methods and their performance, the purpose of this paper is to provide a comprehensive survey of three, recently proposed, major brain tumor segmentation and classification model techniques, namely, region growing, shallow machine learning and deep learning. The established works included in this survey also covers technical aspects such as the strengths and weaknesses of different approaches, pre- and post-processing techniques, feature extraction, datasets, and models’ performance evaluation metrics.

Healthcare ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 153 ◽  
Author(s):  
Francisco Javier Díaz-Pernas ◽  
Mario Martínez-Zarzuela ◽  
Míriam Antón-Rodríguez ◽  
David González-Ortega

In this paper, we present a fully automatic brain tumor segmentation and classification model using a Deep Convolutional Neural Network that includes a multiscale approach. One of the differences of our proposal with respect to previous works is that input images are processed in three spatial scales along different processing pathways. This mechanism is inspired in the inherent operation of the Human Visual System. The proposed neural model can analyze MRI images containing three types of tumors: meningioma, glioma, and pituitary tumor, over sagittal, coronal, and axial views and does not need preprocessing of input images to remove skull or vertebral column parts in advance. The performance of our method on a publicly available MRI image dataset of 3064 slices from 233 patients is compared with previously classical machine learning and deep learning published methods. In the comparison, our method remarkably obtained a tumor classification accuracy of 0.973, higher than the other approaches using the same database.


Author(s):  
Padmapriya Thiyagarajan ◽  
Sriramakrishnan Padmanaban ◽  
Kalaiselvi Thiruvenkadam ◽  
Somasundaram Karuppanagounder

Background: Among the brain-related diseases, brain tumor segmentation on magnetic resonance imaging (MRI) scans is one of the highly focused research domains in the medical community. Brain tumor segmentation is a very challenging task due to its asymmetric form and uncertain boundaries. This process segregates the tumor region into the active tumor, necrosis and edema from normal brain tissues such as white matter (WM), grey matter (GM), and cerebrospinal fluid (CSF). Introduction: The proposed paper analyzed the advancement of brain tumor segmentation from conventional image processing techniques, to deep learning through machine learning on MRI of human head scans. Method: State-of-the-art methods of these three techniques are investigated, and the merits and demerits are discussed. Results: The prime motivation of the paper is to instigate the young researchers towards the development of efficient brain tumor segmentation techniques using conventional and recent technologies. Conclusion: The proposed analysis concluded that the conventional and machine learning methods were mostly applied for brain tumor detection, whereas deep learning methods were good at tumor substructures segmentation.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Linmin Pei ◽  
Lasitha Vidyaratne ◽  
Md Monibor Rahman ◽  
Khan M. Iftekharuddin

AbstractA brain tumor is an uncontrolled growth of cancerous cells in the brain. Accurate segmentation and classification of tumors are critical for subsequent prognosis and treatment planning. This work proposes context aware deep learning for brain tumor segmentation, subtype classification, and overall survival prediction using structural multimodal magnetic resonance images (mMRI). We first propose a 3D context aware deep learning, that considers uncertainty of tumor location in the radiology mMRI image sub-regions, to obtain tumor segmentation. We then apply a regular 3D convolutional neural network (CNN) on the tumor segments to achieve tumor subtype classification. Finally, we perform survival prediction using a hybrid method of deep learning and machine learning. To evaluate the performance, we apply the proposed methods to the Multimodal Brain Tumor Segmentation Challenge 2019 (BraTS 2019) dataset for tumor segmentation and overall survival prediction, and to the dataset of the Computational Precision Medicine Radiology-Pathology (CPM-RadPath) Challenge on Brain Tumor Classification 2019 for tumor classification. We also perform an extensive performance evaluation based on popular evaluation metrics, such as Dice score coefficient, Hausdorff distance at percentile 95 (HD95), classification accuracy, and mean square error. The results suggest that the proposed method offers robust tumor segmentation and survival prediction, respectively. Furthermore, the tumor classification results in this work is ranked at second place in the testing phase of the 2019 CPM-RadPath global challenge.


2021 ◽  
Author(s):  
Asmita Dixit

Abstract With lot happening in the field of Deep Learning, classification of brain tumor is still a matter of concern. Brain tumor segmentation and classification using MRI scans has achieved lot of interest in the area of medical imaging. The emphasis still lies on developing automatic computer-aided system for early predictions and diagnosis. MRI of brain Tumors not only varies in shape but sometimes gives less contrasted details also. In this paper, we present a FastAI based Transfer Learning tumor classification in which pre-trained model with segmented features classifies tumor based on its learning. The proposed model with the technique of Deep learning applies ResNet152 as base model to extract features from the MRI brain images. With certain changes in the last 3 layers of ResNet152, 97% accuracy in Dataset-253, 96% accuracy in Dataset-205 is achieved. Models such as Resnet50, VGG16, ResNet34 and Basic CNN is also evaluated. The model improved from ResNet152 has provided improved results. The observations suggest that usage of Transfer Learning is effective when the Dataset is limited. The prepared model is effective and can be collaborated in computer-aided brain MR images Tumor classification.


2021 ◽  
Vol 4 (9(112)) ◽  
pp. 23-31
Author(s):  
Wasan M. Jwaid ◽  
Zainab Shaker Matar Al-Husseini ◽  
Ahmad H. Sabry

Brain tumors are the growth of abnormal cells or a mass in a brain. Numerous kinds of brain tumors were discovered, which need accurate and early detection techniques. Currently, most diagnosis and detection methods rely on the decision of neuro-specialists and radiologists to evaluate brain images, which may be time-consuming and cause human errors. This paper proposes a robust U-Net deep learning Convolutional Neural Network (CNN) model that can classify if the subject has a tumor or not based on Brain Magnetic resonance imaging (MRI) with acceptable accuracy for medical-grade application. The study built and trained the 3D U-Net CNN including encoding/decoding relationship architecture to perform the brain tumor segmentation because it requires fewer training images and provides more precise segmentation. The algorithm consists of three parts; the first part, the downsampling part, the bottleneck part, and the optimum part. The resultant semantic maps are inserted into the decoder fraction to obtain the full-resolution probability maps. The developed U-Net architecture has been applied on the MRI scan brain tumor segmentation dataset in MICCAI BraTS 2017. The results using Matlab-based toolbox indicate that the proposed architecture has been successfully evaluated and experienced for MRI datasets of brain tumor segmentation including 336 images as training data and 125 images for validation. This work demonstrated comparative performance and successful feasibility of implementing U-Net CNN architecture in an automated framework of brain tumor segmentations in Fluid-attenuated inversion recovery (FLAIR) MR Slices. The developed U-Net CNN model succeeded in performing the brain tumor segmentation task to classify the input brain images into a tumor or not based on the MRI dataset.


Author(s):  
Bhavani Sankar A ◽  
Suryavarshini K

Various Computer-Aided Diagnosis (CAD) systems have been recently used in medical imaging to assist radiologist about their patients. Generally, various image technique such as Computer Tomography (CT), Magnetic Resonance Imaging (MRI) and ultrasound image are used to evaluate the tumor in a brain, lung, liver, breast, prostate etc., Especially, in this work MRI images are used to diagnose tumor in the brain. For full assistance of radiologists and better analysis of Magnetic Resonance Imaging, classification of brain tumor is essential procedure. The automatic classification scheme is essential to prevent the death rate of human. Deep learning is the newest and the current trend of machine learning field that paid a lot of the researchers’ attention in the recent few years. As a proven powerful machine learning tool, deep learning was widely used in several applications for solving various complex problems that require extremely high accuracy and sensitivity, particularly in the medical field. Tumor regions from an MR images are segmented using a deep learning technique. The automatic brain tumor classification is very challenging task in large spatial and structural variability of surrounding region of brain tumor. In this work, automatic brain tumor detection using Convolutional Neural Networks (CNN) classification. In general, brain tumor is one of the most common and aggressive malignant tumor diseases which is leading to very short expected life if it is diagnosed at higher grade. The deeper architecture design is performed by using small kernels. Other performance measures used in this study are the accuracy, sensitivity and specificity.


Sign in / Sign up

Export Citation Format

Share Document