subtype classification
Recently Published Documents


TOTAL DOCUMENTS

244
(FIVE YEARS 110)

H-INDEX

26
(FIVE YEARS 6)

Author(s):  
Aime T. Franco ◽  
Julio C. Ricarte-Filho ◽  
Amber Isaza ◽  
Zachary Jones ◽  
Neil Jain ◽  
...  

PURPOSE In 2014, data from a comprehensive multiplatform analysis of 496 adult papillary thyroid cancer samples reported by The Cancer Genome Atlas project suggested that reclassification of thyroid cancer into molecular subtypes, RAS-like and BRAF-like, better reflects clinical behavior than sole reliance on pathologic classification. The aim of this study was to categorize the common oncogenic variants in pediatric differentiated thyroid cancer (DTC) and investigate whether mutation subtype classification correlated with the risk of metastasis and response to initial therapy in pediatric DTC. METHODS Somatic cancer gene panel analysis was completed on DTC from 131 pediatric patients. DTC were categorized into RAS-mutant ( H-K-NRAS), BRAF-mutant ( BRAF p.V600E), and RET/ NTRK fusion ( RET, NTRK1, and NTRK3 fusions) to determine differences between subtype classification in regard to pathologic data (American Joint Committee on Cancer TNM) as well as response to therapy 1 year after initial treatment had been completed. RESULTS Mutation-based subtype categories were significant in most variables, including age at diagnosis, metastatic behavior, and the likelihood of remission at 1 year. Patients with RET/ NTRK fusions were significantly more likely to have advanced lymph node and distant metastasis and less likely to achieve remission at 1 year than patients within RAS- or BRAF-mut subgroups. CONCLUSION Our data support that genetic subtyping of pediatric DTC more accurately reflects clinical behavior than sole reliance on pathologic classification with patients with RET/ NTRK fusions having worse outcomes than those with BRAF-mutant disease. Future trials should consider inclusion of molecular subtype into risk stratification.


2022 ◽  
Vol 22 (1) ◽  
Author(s):  
Shuo Zhang ◽  
Jing Wang ◽  
Lulu Pei ◽  
Kai Liu ◽  
Yuan Gao ◽  
...  

Abstract Background TOAST subtype classification is important for diagnosis and research of ischemic stroke. Limited by experience of neurologist and time-consuming manual adjudication, it is a big challenge to finish TOAST classification effectively. We propose a novel active deep learning architecture to classify TOAST. Methods To simulate the diagnosis process of neurologists, we drop the valueless features by XGB algorithm and rank the remaining ones. Utilizing active learning framework, we propose a novel causal CNN, in which it combines with a mixed active selection criterion to optimize the uncertainty of samples adaptively. Meanwhile, KL-focal loss derived from the enhancement of Focal loss by KL regularization is introduced to accelerate the iterative fine-tuning of the model. Results To evaluate the proposed method, we construct a dataset which consists of totally 2310 patients. In a series of sequential experiments, we verify the effectiveness of each contribution by different evaluation metrics. Experimental results show that the proposed method achieves competitive results on each evaluation metric. In this task, the improvement of AUC is the most obvious, reaching 77.4. Conclusions We construct a backbone causal CNN to simulate the neurologist process of that could enhance the internal interpretability. The research on clinical data also indicates the potential application value of this model in stroke medicine. Future work we would consider various data types and more comprehensive patient types to achieve fully automated subtype classification.


Author(s):  
Hui-Jun Yang ◽  
Han-Joon Kim ◽  
Yu Jin Jung ◽  
Dallah Yoo ◽  
Ji-Hyun Choi ◽  
...  

2022 ◽  
Vol 71 ◽  
pp. 103240
Author(s):  
Hui Yu ◽  
Dongyi Liu ◽  
Jing Zhao ◽  
Zhen Chen ◽  
Chengxiang Gou ◽  
...  

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 65
Author(s):  
Wei Dai ◽  
Wenhao Yue ◽  
Wei Peng ◽  
Xiaodong Fu ◽  
Li Liu ◽  
...  

Cancer subtype classification helps us to understand the pathogenesis of cancer and develop new cancer drugs, treatment from which patients would benefit most. Most previous studies detect cancer subtypes by extracting features from individual samples, ignoring their associations with others. We believe that the interactions of cancer samples can help identify cancer subtypes. This work proposes a cancer subtype classification method based on a residual graph convolutional network and a sample similarity network. First, we constructed a sample similarity network regarding cancer gene co-expression patterns. Then, the gene expression profiles of cancer samples as initial features and the sample similarity network were passed into a two-layer graph convolutional network (GCN) model. We introduced the initial features to the GCN model to avoid over-smoothing during the training process. Finally, the classification of cancer subtypes was obtained through a softmax activation function. Our model was applied to breast invasive carcinoma (BRCA), glioblastoma multiforme (GBM) and lung cancer (LUNG) datasets. The accuracy values of our model reached 82.58%, 85.13% and 79.18% for BRCA, GBM and LUNG, respectively, which outperformed the existing methods. The survival analysis of our results proves the significant clinical features of the cancer subtypes identified by our model. Moreover, we can leverage our model to detect the essential genes enriched in gene ontology (GO) terms and the biological pathways related to a cancer subtype.


Biomedicines ◽  
2021 ◽  
Vol 9 (11) ◽  
pp. 1733
Author(s):  
Thi Mai Nguyen ◽  
Nackhyoung Kim ◽  
Da Hae Kim ◽  
Hoang Long Le ◽  
Md Jalil Piran ◽  
...  

Deep learning (DL) is a distinct class of machine learning that has achieved first-class performance in many fields of study. For epigenomics, the application of DL to assist physicians and scientists in human disease-relevant prediction tasks has been relatively unexplored until very recently. In this article, we critically review published studies that employed DL models to predict disease detection, subtype classification, and treatment responses, using epigenomic data. A comprehensive search on PubMed, Scopus, Web of Science, Google Scholar, and arXiv.org was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Among 1140 initially identified publications, we included 22 articles in our review. DNA methylation and RNA-sequencing data are most frequently used to train the predictive models. The reviewed models achieved a high accuracy ranged from 88.3% to 100.0% for disease detection tasks, from 69.5% to 97.8% for subtype classification tasks, and from 80.0% to 93.0% for treatment response prediction tasks. We generated a workflow to develop a predictive model that encompasses all steps from first defining human disease-related tasks to finally evaluating model performance. DL holds promise for transforming epigenomic big data into valuable knowledge that will enhance the development of translational epigenomics.


Author(s):  
Lu Zhao ◽  
Xiaowei Xu ◽  
Runping Hou ◽  
Wangyuan Zhao ◽  
Hai Zhong ◽  
...  

Abstract Subtype classification plays a guiding role in the clinical diagnosis and treatment of non-small-cell lung cancer (NSCLC). However, due to the gigapixel of whole slide images (WSIs) and the absence of definitive morphological features, most automatic subtype classification methods for NSCLC require manually delineating the regions of interest (ROIs) on WSIs. In this paper, a weakly supervised framework is proposed for accurate subtype classification while freeing pathologists from pixel-level annotation. With respect to the characteristics of histopathological images, we design a two-stage structure with ROI localization and subtype classification. We first develop a method called MR-EM-CNN (multi-resolution expectation-maximization convolutional neural network) to locate ROIs for subsequent subtype classification. The EM algorithm is introduced to select the discriminative image patches for training a patch-wise network, with only WSI-wise labels available. A multi-resolution mechanism is designed for fine localization, similar to the coarse-to-fine process of manual pathological analysis. In the second stage, we build a novel hierarchical attention multi-scale network (HMS) for subtype classification. HMS can capture multi-scale features flexibly driven by the attention module and implement hierarchical features interaction. Experimental results on the 1002-patient Cancer Genome Atlas dataset achieved an AUC of 0.9602 in the ROI localization and an AUC of 0.9671 for subtype classification. The proposed method shows superiority compared with other algorithms in the subtype classification of NSCLC. The proposed framework can also be extended to other classification tasks with WSIs.


Sign in / Sign up

Export Citation Format

Share Document