scholarly journals Numerical Simulation of Large Wave Heights from Super Typhoon Nepartak (2016) in the Eastern Waters of Taiwan

2020 ◽  
Vol 8 (3) ◽  
pp. 217 ◽  
Author(s):  
Shih-Chun Hsiao ◽  
Hongey Chen ◽  
Han-Lun Wu ◽  
Wei-Bo Chen ◽  
Chih-Hsin Chang ◽  
...  

Super Typhoon Nepartak (2016) was used for this case study because it is the most intense typhoon that made landfall in Taiwan in the past decade. Winds extracted from the Climate Forecast System version 2 (CFSV2) and ERA5 datasets and merged with a parametric typhoon model using two hybrid techniques served as the meteorological conditions for driving a coupled wave-circulation model. The computed significant wave heights were compared with the observations recorded at three wave buoys in the eastern waters of Taiwan. Model performance in terms of significant wave height was also investigated by employing the CFSV2 winds under varying spatial and temporal resolutions. The results of the numerical experiments reveal that the simulated storm wave heights tended to decrease significantly due to the lower spatial resolution of the hourly winds from the CFSV2 dataset; however, the variations in the storm wave height simulations were less sensitive to the temporal resolution of the wind field. Introducing the combination of the CFSV2 and the parametric typhoon winds greatly improved the storm wave simulations, and similar phenomena can be found in the exploitation of the ERA5 dataset blended into the parametric wind field. The overall performance of the hybrid winds derived from ERA5 was better than that from the CFSV2, especially in the outer region of Super Typhoon Nepartak (2016).

1972 ◽  
Vol 12 (04) ◽  
pp. 321-328 ◽  
Author(s):  
M. M. Patterson

Abstract An estimate of wave heights is needed for risk and venture analysis, for platform design, and for operational planning. Very little reliable data on hurricane waves have been available for a number of years. The present hindcast system uses a moving, two-dimensional wind field to generates and propagate waves to a location of interest. The propagate waves to a location of interest. The wind-wave model is based on work reported in the literature by Wilson. Wave Program I uses a synoptic wind field based on measurements or observations. Wave Program II generates its own wind field based on the track, the time history of the radius to maximum Winds, and the barometric pressure of the storm. Wave Program III also pressure of the storm. Wave Program III also generates its own wind fields, but the storm is moved along a predetermined path. The results of all three hindcast methods have been compared with data gathered from Hurricane Carla. Other hurricanes have also been studied and each of the programs gives comparable results. programs gives comparable results Introduction The most critical environmental factor in deepwater platform design is the selection of wave heights to which the platform will be subjected. Regardless of the design theory, wave loading contributes a major portion of the environmental force on a deep-water platform. To date there has been little sound historical evidence of the magnitude of wave heights that could occur in the Gulf of Mexico. To overcome this problem the offshore oil industry has sought an answer by two related methods. The first method consists of several measuring programs to gather both wave force and wave height information. Since reliable measuring techniques have existed for only a short time, the second method consists of developing techniques to predict historical waves that probably occurred in the Gulf of Mexico. The purpose of this paper is to document Shell's efforts in hindcasting paper is to document Shell's efforts in hindcasting waves for hurricanes that have passed through the Gulf since 1900. In order to hindcast waves, it was necessary to find a mathematical simulation model that would generate waves from a moving wind field. Such wind fields may be taken from synoptic charts or developed from empirical equations based on hurricane data such as radius to maximum winds, central pressure, and forward speed. WAVES FROM A MOVING WIND FIELDTHE BASIC WILSON MODEL Wilson, a consultant in the field of oceanography, has developed a mathematical model that would generate and propagate waves based on a moving wind field. We shall discuss the basic equations for this technique, but shall not go into detail concerning how the equations were developed. INITIATION OF THE WAVE The first wave height generated by a moving wind field can be calculated from Eq. 1 below (1) H1 = 0 .0636U In the above equation Ui is the wind vector in the direction of propagation at time zero and location (x1) where the wave is to start. The distance x1 over which the wave will move is described in Eq. 2. (2) =  0 .761 x1 is the distance the wave travels in nautical miles before it is to be modified by another value of wind velocity. The celerity is defined by Eq. 3. (3) C1  =  2 .498 Finally, the period and wave length of this initial wave are described below. (4) T1  =  C1/3 (5)1 2L1  =  5 .12T SPEJ P. 321


2021 ◽  
Vol 13 (2) ◽  
pp. 195
Author(s):  
He Wang ◽  
Jingsong Yang ◽  
Jianhua Zhu ◽  
Lin Ren ◽  
Yahao Liu ◽  
...  

Sea state estimation from wide-swath and frequent-revisit scatterometers, which are providing ocean winds in the routine, is an attractive challenge. In this study, state-of-the-art deep learning technology is successfully adopted to develop an algorithm for deriving significant wave height from Advanced Scatterometer (ASCAT) aboard MetOp-A. By collocating three years (2016–2018) of ASCAT measurements and WaveWatch III sea state hindcasts at a global scale, huge amount data points (>8 million) were employed to train the multi-hidden-layer deep learning model, which has been established to map the inputs of thirteen sea state related ASCAT observables into the wave heights. The ASCAT significant wave height estimates were validated against hindcast dataset independent on training, showing good consistency in terms of root mean square error of 0.5 m under moderate sea condition (1.0–5.0 m). Additionally, reasonable agreement is also found between ASCAT derived wave heights and buoy observations from National Data Buoy Center for the proposed algorithm. Results are further discussed with respect to sea state maturity, radar incidence angle along with the limitations of the model. Our work demonstrates the capability of scatterometers for monitoring sea state, thus would advance the use of scatterometers, which were originally designed for winds, in studies of ocean waves.


Author(s):  
Leonardo Roncetti ◽  
Fabrício Nogueira Corrêa ◽  
Carl Horst Albrecht ◽  
Breno Pinheiro Jacob

Lifting operations with offshore cranes are fundamental for proper functioning of a platform. Despite the great technological development, offshore cranes load charts only consider the significant wave height as parameter of environmental load, neglecting wave period, which may lead to unsafe or overestimated lifting operations. This paper aims to develop a method to design offshore crane operational limit diagrams for lifting of personnel and usual loads, in function of significant wave height and wave peak period, using time domain dynamic analysis, for a crane installed on a floating unit. The lifting of personnel with crane to transfer between a floating unit and a support vessel is a very used option in offshore operations, and this is in many cases, the only alternative beyond the helicopter. Due to recent fatal accidents with lifting operations in offshore platforms, it is essential the study about this subject, contributing to the increase of safety. The sea states for analysis were chosen covering usual significant wave heights and peak periods limits for lifting operations. The methodology used the SITUA / Prosim software to obtain the dynamic responses of the personnel transfer basket lifting and container loads on a typical FPSO. Through program developed by the author, it was implemented the automatic generation of diagrams as a function of operational limits. It is concluded that using this methodology, it is possible to achieve greater efficiency in the design and execution of personnel and routine load lifting, increasing safety and a wider weather window available.


2021 ◽  
Vol 8 ◽  
Author(s):  
Tzu-Yin Chang ◽  
Hongey Chen ◽  
Shih-Chun Hsiao ◽  
Han-Lun Wu ◽  
Wei-Bo Chen

The ocean surface waves during Super Typhoons Maria (2018), Lekima (2019), and Meranti (2016) were reproduced using hybrid typhoon winds and a fully coupled wave-tide-circulation modeling system (SCHISM-WWM-III). The hindcasted significant wave heights are in good agreement with the along-track significant wave heights measured by the altimeters aboard the SARAL (Satellite with ARgos and ALtiKa) and Jason-2 satellites. Two numerical experiments pairing Super Typhoons Maria (2018) and Meranti (2016) and Super Typhoons Lekima (2019) and Meranti (2016) were conducted to analyze the storm wave characteristics of binary and individual typhoons. Four points located near the tracks of the three super typhoons were selected to elucidate the effects of binary typhoons on ocean surface waves. The comparisons indicate that binary typhoons not only cause an increase in the significant wave height simulations at four selected pints but also result in increases in the one-dimensional wave energy and two-dimensional directional wave spectra. Our results also reveal that the effects of binary typhoons on ocean surface waves are more significant at the periphery of the typhoon than near the center of the typhoon. The interactions between waves generated by Super Typhoons Maria (2018) and Meranti (2016) or Super Typhoons Lekima (2019) and Meranti (2016) might be diminished by Taiwan Island even if the separation distance between two typhoons is <700 km.


Author(s):  
H. Bazargan ◽  
H. Bahai ◽  
A. Aminzadeh-Gohari ◽  
A. Bazargan

A large number of ocean activities call for real time or on-line forecasting of wind wave characteristics including significant wave height (Hs). The work reported in this paper uses statistics, and artificial neural networks trained with an optimization technique called simulated annealing to estimate the parameters of a probability distribution called hepta-parameter spline for the conditional probability density functions (pdf’s) of significant wave heights given their eight immediate preceding 3-hourly observed Hs’s. These pdf’s are used in the simulation of significant wave heights related to a location in the Pacific. The paper also deals with short and long term forecasting of Hs for the region through generating random variates from the spline distribution.


2007 ◽  
Vol 129 (4) ◽  
pp. 300-305 ◽  
Author(s):  
Philip Jonathan ◽  
Kevin Ewans

Inherent uncertainties in estimation of extreme wave heights in hurricane-dominated regions are explored using data from the GOMOS Gulf of Mexico hindcast for 1900–2005. In particular, the effect of combining correlated values from a neighborhood of 72 grid locations on extreme wave height estimation is quantified. We show that, based on small data samples, extreme wave heights are underestimated and site averaging usually improves estimates. We present a bootstrapping approach to evaluate uncertainty in extreme wave height estimates. We also argue in favor of modeling supplementary indicators for extreme wave characteristics, such as a high percentile (95%) of the distribution of 100-year significant wave height, in addition to its most probable value, especially for environments where the distribution of 100-year significant wave height is strongly skewed.


2015 ◽  
Vol 32 (11) ◽  
pp. 2211-2222 ◽  
Author(s):  
R. Harikumar ◽  
N. K. Hithin ◽  
T. M. Balakrishnan Nair ◽  
P. Sirisha ◽  
B. Krishna Prasad ◽  
...  

AbstractOcean state forecast (OSF) along ship routes (OAS) is an advisory service of the Indian National Centre for Ocean Information Services (INCOIS) of the Earth System Science Organization (ESSO) that helps mariners to ensure safe navigation in the Indian Ocean in all seasons as well as in extreme conditions. As there are many users who solely depend on this service for their decision making, it is very important to ensure the reliability and accuracy of the service using the available in situ and satellite observations. This study evaluates the significant wave height (Hs) along the ship track in the Indian Ocean using the ship-mounted wave height meter (SWHM) on board the Oceanographic Research Vessel Sagar Nidhi, and the Cryosat-2 and Jason altimeters. Reliability of the SWHM is confirmed by comparing with collocated buoy and altimeter observations. The comparison along the ship routes using the SWHM shows very good agreement (correlation coefficient > 0.80) in all three oceanic regimes, [the tropical northern Indian Ocean (TNIO), the tropical southern Indian Ocean (TSIO), and extratropical southern Indian Ocean (ETSI)] with respect to the forecasts with a lead time of 48 h. However, the analysis shows ~10% overestimation of forecasted significant wave height in the low wave heights, especially in the TNIO. The forecast is found very reliable and accurate for the three regions during June–September with a higher correlation coefficient (average = 0.88) and a lower scatter index (average = 15%). During other months, overestimation (bias) of lower Hs is visible in the TNIO.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Natália Lemke ◽  
◽  
Lauro Julio Calliari ◽  
José Antônio Scotti Fontoura ◽  
Déborah Fonseca Aguiar

ABSTRACT The wave climate characterization in coastal environments is essentially important to oceanography and coastal engineering professionals regarding coastal protection works. Thus, this study aims to determine the most frequent wave parameters (significant wave height, peak period and peak direction) in Patos Lagoon during the period of operation of a directional waverider buoy (from 01/27/2015 to 06/30/2015). The equipment was moored at approximately 14 km from the São Lourenço do Sul coast at the geographic coordinates of 31º29’06” S and 51º55’07” W, with local depth of six meters, registering significant wave height, peak period and peak direction time series. During the analyzed period, the greatest wave frequencies corresponded to short periods (between 2 and 3.5 seconds) and small values of significant wave heights (up to 0.6 meters), with east peak wave directions. The largest wave occurrences corresponded to east peak wave directions (33.3%); peak wave periods between 2.5 and 3 seconds (25.6%) and between 3 and 3.5 seconds (22.1%); and to significant wave heights of up to 0.3 meters (41.2%) and from 0.3 to 0.6 meters (38%). This research yielded unprecedented findings to Patos Lagoon by describing in detail the most occurring wave parameters during the analyzed period, establishing a consistent basis for several other studies that might still be conducted by the scientific community.


Author(s):  
Lawrence Mak ◽  
Andrew Kuczora ◽  
Antonio Simo˜es Re´

Current IMO regulations require life rafts to be tow tested only in calm water. In real evacuation situations, life rafts are deployed in the prevailing environmental conditions, with wind and waves. Added wave resistance is small at low wave heights but increases nonlinearly with increased wave height. If life rafts are to be towed in moderate seas (up to 4 m significant wave height), tow force estimates based only on calm water tow resistance become less reliable. Tow patches, towline, towing craft etc. also need to be designed to withstand dynamic wave loading in addition to mean load. Therefore, mean tow force, tow force variation and maximum tow force are important. A full-scale 16-person, commercially available, SOLAS approved life raft was towed in the tank, in upwind, head seas with significant wave height of 0.5 m. The measured tow force showed that it could be treated as a linear system with wave amplitude, by demonstrating that tow force is mainly inertial and follows a Rayleigh distribution. Therefore, extreme-value statistics used for waves can be applied to developing equations for predicting tow force. A method is proposed to predict life raft tow force at different tow speeds and in various sea states, with waves and wind. The method involved using tank experiments to obtain tow force response for one sea state. The information can then be used to predict life raft tow force in wind and waves for different sea states. Three equations are proposed to demonstrate that a simple tank experiment could provide valuable information necessary to empirically estimate the mean tow force, tow force variation and maximum tow force for a specific life raft in different sea states. The equations are developed for upwind, head seas. These equations were extensively validated using tow force measured in the tank. They were partially validated with limited sea trial data, by towing the same 16-person life raft and a 42-person life raft in upwind, head seas with significant wave height of 1.3 m. The equations were able to predict maximum tow forces to within 15% of the measured.


Author(s):  
Andreas Sterl ◽  
Sofia Caires

The European Centre for Medium Range Weather Forecasts (ECMWF) has recently finished ERA-40, a reanalysis covering the period September 1957 to August 2002. One of the products of ERA-40 consists of 6-hourly global fields of wave parameters like significant wave height and wave period. These data have been generated with the Centre’s WAM wave model. From these results the authors have derived climatologies of important wave parameters, including significant wave height, mean wave period, and extreme significant wave heights. Particular emphasis is on the variability of these parameters, both in space and time. Besides for scientists studying climate change, these results are also important for engineers who have to design maritime constructions. This paper describes the ERA-40 data and gives an overview of the results derived. The results are available on a global 1.5° × 1.5° grid. They are accessible from the web-based KNMI/ERA-40 Wave Atlas at http://www.knmi.nl/waveatlas.


Sign in / Sign up

Export Citation Format

Share Document