scholarly journals The Effect of Wave-Induced Current and Coastal Structure on Sediment Transport at the Zengwen River Mouth

2021 ◽  
Vol 9 (3) ◽  
pp. 333
Author(s):  
Chun-Hung Pao ◽  
Jia-Lin Chen ◽  
Shih-Feng Su ◽  
Yu-Ching Huang ◽  
Wen-Hsin Huang ◽  
...  

The mechanisms that control estuarine sediment transport are complicated due to the interaction between riverine flows, tidal currents, waves, and wave-driven currents. In the past decade, severe seabed erosion and shoreline retreat along the sandy coast of western Taiwan have raised concerns regarding the sustainability of coastal structures. In this study, ADCPs(Acoustic Doppler Current Profiler) and turbidity meters were deployed at the mouth of the Zengwen river to obtain the time series and the spatial distribution of flow velocities and turbidity during the base flow and flood conditions. A nearshore circulation model, SHORECIRC, has been adapted into a hybrid finite-difference/finite-volume, TVD (Total Variation Diminishing)-type scheme and coupled with the wave-spectrum model Simulating Waves Nearshore (SWAN). Conventional finite-difference schemes often produce unphysical oscillations when modeling coastal processes with abrupt bathymetric changes at river mouths. In contrast, the TVD-type finite volume scheme allows for robust treatment of discontinuities through the shock-capturing mechanism. The model reproduces water levels, waves, currents observed at the mouth of the Zengwen River reasonably well. The simulated residual sediment transport patterns demonstrate that the transport process at the river mouth is dominated by the interaction of the bathymetry and wave-induced currents when the riverine discharge was kept in reservoirs. The offshore residual transport causes erosion at the northern part of the river mouth, and the onshore residual transport causes accretion in the ebb tidal shoals around the center of the river mouth. The simulated morphological evolution displays significant changes on shallower deltas. The location with significant sea bed changes is consistent with the spot in which severe erosion occurred in recent years. Further analysis of morphological evolution is also discussed to identify the role of coastal structures, for example, the extension of the newly constructed groins near the river mouth.

2021 ◽  
Author(s):  
Mara Orescanin ◽  
Tyonna McPherson ◽  
Paul Jessen

<p>The Carmel River runs 58 km from the Santa Lucia Mountains through the Carmel Valley eventually entering a lagoon at Carmel River State Beach near Carmel, California, USA. During the dry summer months, the lagoon is closed, with no connection to the coastal ocean.  However, during the wet winter months, the river often breaches through the lagoon allowing water to freely flow between the river and Carmel Bay. Sediment transport, in part owing to river discharge and in part owing to ocean forcing (tides and waves), contributes heavily to whether the lagoon is open or closed: when there are low flow conditions, waves and tides can decrease flow rates in the breach, allowing sediment to settle. The sediment budget is expected to be a closed system, owing to the rocky headlands and long-term stability (no yearly regression or transgression) of the shoreline, despite managed attempts to control breach and closure timing. However, it is currently unknown 1) how velocity profiles evolve during breaching, and 2) how much sediment moves during such an event. The hypothesis is that the breach mouth can completely disappear and re-emerge over a single breach-closure cycle, leading to meter-scale daily accretion and erosion rates of berm height if berm elevation is significantly lower than the expected steady-state berm height. Furthermore, it is hypothesized that during active breaching, discharge rates through the breach channel are larger than upstream river discharge rates owing to elevated water levels within the back lagoon. This study uses a RiverSurveyor M9 Acoustic Doppler Profiler to measure outflow discharge and GPS topographic surveys to quantify elevation changes. A velocity profile can be built which will estimate the sediment transport potential within the breach. The information obtained will help identify and better understand the river discharge thresholds which contribute to frequent breaching as well as estimates of morphological evolution during breaching, which are currently unknown, and can assist in determining likelihood of successful managed breaching and closure events. </p>


Water ◽  
2019 ◽  
Vol 11 (8) ◽  
pp. 1721 ◽  
Author(s):  
Arniza Fitri ◽  
Roslan Hashim ◽  
Soroush Abolfathi ◽  
Khairul Nizam Abdul Maulud

Understanding the dynamics of sediment transport and erosion-deposition patterns in the locality of a coastal structure is vital to evaluating the performance of coastal structures and predicting the changes in coastal dynamics caused by a specific structure. The nearshore hydro-morphodynamic responses to coastal structures vary widely, as these responses are complex functions with numerous parameters, including structural design, sediment and wave dynamics, angle of approach, slope of the coast and the materials making up the beach and structures. This study investigated the sediment transport and erosion-deposition patterns in the locality of a detached low-crested breakwater protecting the cohesive shore of Carey Island, Malaysia. The data used for this study were collected from field measurements and secondary sources from 2014 to 2015. Sea-bed elevations were monitored every two months starting from December 2014 to October 2015, in order to quantify the sea-bed changes and investigate the erosion-deposition patterns of the cohesive sediment due to the existence of the breakwater. In addition, numerical modelling was also performed to understand the impacts of the breakwater on the nearshore hydrodynamics and investigate the dynamics of fine sediment transport around the breakwater structure. A coupled two-dimensional hydrodynamics-sediment transport model based on Reynolds averaged Navier-Stokes (RANS) equations and cell-centered finite volume method with flexible meshing approach was adopted for this study. Analysis of the results showed that the detached breakwater reduced both current speed and wave height behind the structure by an average of 0.12 m/s and 0.1 m, respectively. Also, the breakwater made it possible for trapped suspended sediment to settle in a sheltered area by approximately 8 cm in height near to the first main segment of the breakwater, from 1 year after its construction. The numerical results were in line with the field measurements, where sediment accumulations were concentrated in the landward area behind the breakwater. In particular, sediment accumulations were concentrated along the main segments of the breakwater structure during the Northeast (NE) season, while concentration near the first main segment of the breakwater were recorded during the Southwest (SW) season. The assessment illustrated that the depositional patterns were influenced strongly by the variations in seasonal hydrodynamic conditions, sediment type, sediment supply and the structural design. Detached breakwaters are rarely considered for cohesive shores; hence, this study provides new, significant benefits for engineers, scientists and coastal management authorities with regard to seasonal dynamic changes affected by a detached breakwater and its performance on a cohesive coast.


2021 ◽  
Author(s):  
Maurizio Brocchini ◽  
Matteo Postacchini ◽  
Lorenzo Melito ◽  
Eleonora Perugini ◽  
Andrew J. Manning ◽  
...  

Microtidal river mouths are dynamic environments that evolve as a consequence of many forcing actions. Under the hydrodynamic viewpoint, river currents, sea waves and tides strongly interact, and their interplay determines specific sediment transport and morphological patterns. Beyond literature evidence, information comes from field observations made at the Misa River study site, a microtidal river along the Adriatic Sea (Italy), object of a long-going monitoring. The river runs for 48 km in a watershed of 383 km2, providing a discharge of about 400 m3/s for return periods of 100 years. The overall hydrodynamics, sediment transport and morphological evolution at the estuary are analyzed with particular attention to specific issues like: the generation of vortical flows at the river mouth, the influence of various wave modes (infragravity to tidal) propagating upriver, the role of sediment flocculation, the generation and evolution of bed features (river-mouth bars and longitudinal nearshore bars). Numerical simulations are also used to clarify specific mechanisms of interest.


2011 ◽  
Vol 1 (32) ◽  
pp. 68 ◽  
Author(s):  
Pham Thanh Nam ◽  
Magnus Larson ◽  
Hans Hanson

A numerical model of beach topography evolution was developed. The model includes five sub-models: random wave transformation model, surface roller model, wave-induced current model, sediment transport model, and morphological change model. The model was validated by two unique high-quality data sets obtained from experiments on the morphological impact of a detached breakwater and a T-head groin in the basin of the Large-scale Sediment Transport Facility (LSTF) at the US Army Corps of Engineer Research and Development Center in Vicksburg, Miss. The simulations demonstrated that the model well reproduced the wave conditions, wave-induced currents, and morphological evolution in the vicinity of the structures.


1995 ◽  
Vol 32 (2) ◽  
pp. 77-83
Author(s):  
Y. Yüksel ◽  
D. Maktav ◽  
S. Kapdasli

Submarine pipelines must be designed to resist wave and current induced hydrodynamic forces especially in and near the surf zone. They are buried as protection against forces in the surf zone, however this procedure is not always feasible particularly on a movable sea bed. For this reason the characteristics of the sediment transport on the construction site of beaches should be investigated. In this investigation, the application of the remote sensing method is introduced in order to determine and observe the coastal morphology, so that submarine pipelines may be protected against undesirable seabed movement.


Sign in / Sign up

Export Citation Format

Share Document