scholarly journals A Barotropic Solver for High-Resolution Ocean General Circulation Models

2021 ◽  
Vol 9 (4) ◽  
pp. 421
Author(s):  
Xiaodan Yang ◽  
Shan Zhou ◽  
Shengchang Zhou ◽  
Zhenya Song ◽  
Weiguo Liu

High-resolution global ocean general circulation models (OGCMs) play a key role in accurate ocean forecasting. However, the models of the operational forecasting systems are still not in high resolution due to the subsequent high demand for large computation, as well as the low parallel efficiency barrier. Good scalability is an important index of parallel efficiency and is still a challenge for OGCMs. We found that the communication cost in a barotropic solver, namely, the preconditioned conjugate gradient (PCG) method, is the key bottleneck for scalability due to the high frequency of the global reductions. In this work, we developed a new algorithm—a communication-avoiding Krylov subspace method with a PCG (CA-PCG)—to improve scalability and then applied it to the Nucleus for European Modelling of the Ocean (NEMO) as an example. For PCG, inner product operations with global communication were needed in every iteration, while for CA-PCG, inner product operations were only needed every eight iterations. Therefore, the global communication cost decreased from more than 94.5% of the total execution time with PCG to less than 63.4% with CA-PCG. As a result, the execution time of the barotropic modes decreased from more than 17,000 s with PCG to less than 6000 s with CA-PCG, and the total execution time decreased from more than 18,000 s with PCG to less than 6200 s with CA-PCG. Besides, the ratio of the speedup can also be increased from 3.7 to 4.6. In summary, the high process count scalability when using CA-PCG was effectively improved from that using the PCG method, providing a highly effective solution for accurate ocean simulation.

2000 ◽  
Vol 14 (4) ◽  
pp. 1267-1281 ◽  
Author(s):  
J. L. Sarmiento ◽  
P. Monfray ◽  
E. Maier-Reimer ◽  
O. Aumont ◽  
R. J. Murnane ◽  
...  

2005 ◽  
Vol 35 (4) ◽  
pp. 474-488 ◽  
Author(s):  
Hideyuki Nakano ◽  
Hiroyasu Hasumi

Abstract A series of zonal currents in the Pacific Ocean is investigated using eddy-permitting ocean general circulation models. The zonal currents in the subsurface are classified into two parts: one is a series of broad zonal flows that has the meridional pattern slanting poleward with increasing depth and the other is finescale zonal jets with the meridional scale of 3°–5° formed in each broad zonal flow. The basic pattern for the broad zonal flows is similar between the coarse-resolution model and the eddy-permitting model and is thought to be the response to the wind forcing. A part of the zonal jets embedded in each zonal flow is explained by the anomalous local wind forcing. Most of them, however, seem to be mainly created by the rectification of turbulent processes on a β plane (the Rhines effect), and zonal jets in this study have common features with the zonally elongated flows obtained in previous modeling studies conducted in idealized basins. The position of zonal jets is not stable when the ocean floor is flat, whereas it oscillates only within a few degrees under realistic bottom topography.


Author(s):  
Daisuke Matsuoka ◽  
Fumiaki Araki ◽  
Hideharu Sasaki

Numerical study of ocean eddies has been carried out by using high-resolution ocean general circulation models. In order to understand ocean eddies from the large volume data produced by simulations, visualizing only eddy distribution at each time step is insufficient; time-variations in eddy events and phenomena must also be considered. However, existing methods cannot precisely find and track eddy events such as amalgamation and bifurcation. In this study, we propose an original approach for eddy detection, tracking, and event visualization based on an eddy classification system. The proposed method detects streams and currents as well as eddies, and it classifies discovered eddies into several categories using the additional stream and current information. By tracking how the classified eddies vary over time, detecting events such as eddy amalgamation and bifurcation as well as the interaction between eddies and ocean currents becomes achievable. We adopt the proposed method for two ocean areas in which strong ocean currents exist as case studies. We visualize the detected eddies and events in a time series of images, allowing us to acquire an intuitive understanding of a region of interest concealed in a high-resolution data set. Furthermore, our proposed method succeeded in clarifying the occurrence place and seasonality of each type of eddy event.


Sign in / Sign up

Export Citation Format

Share Document