scholarly journals COLREGs: Compliant Dynamic Obstacle Avoidance of USVs Based on theDynamic Navigation Ship Domain

2021 ◽  
Vol 9 (8) ◽  
pp. 837
Author(s):  
Fang Deng ◽  
Leilei Jin ◽  
Xiuhui Hou ◽  
Longjin Wang ◽  
Boyang Li ◽  
...  

Dynamic obstacle avoidance is essential for unmanned surface vehicles (USVs) to achieve autonomous sailing. This paper presents a dynamic navigation ship domain (DNSD)-based dynamic obstacle avoidance approach for USVs in compliance with COLREGs. Based on the detected obstacle information, the approach can not only infer the collision risk, but also plan the local avoidance path trajectory to make appropriate avoidance maneuvers. Firstly, the analytical DNSD model is established taking into account the ship parameters, maneuverability, sailing speed, and encounter situations regarding COLREGs. Thus, the DNSDs of the own and target ships are utilized to trigger the obstacle avoidance mode and determine whether and when the USV should make avoidance maneuvers. Then, the local avoidance path planner generates the new avoidance waypoints and plans the avoidance trajectory. Simulations were implemented for a single obstacle under different encounter situations and multiple dynamic obstacles. The results demonstrated the effectiveness and superiority of the proposed DNSD-based obstacle avoidance algorithm.

2019 ◽  
Vol 16 (3) ◽  
pp. 172988141985194 ◽  
Author(s):  
Lifei Song ◽  
Zhuo Chen ◽  
Zaopeng Dong ◽  
Zuquan Xiang ◽  
Yunsheng Mao ◽  
...  

The International Regulations for Preventing Collisions at Sea (COLREGS) specify certain navigation rules for ships at risk for collision. Theoretically, the safety of unmanned surface vehicles and traffic boats would be guaranteed when they comply with the COLREGS. However, if traffic boats do not comply with the demands of the convention, thereby increasing the danger level, then adhering to the COLREGS may be dangerous for the unmanned surface vehicle. In this article, a dynamic obstacle avoidance algorithm for unmanned surface vehicles based on eccentric expansion was developed. This algorithm is used to solve the possible failure of collision avoidance when the unmanned surface vehicle invariably obeys the COLREGS during the avoidance process. An obstacle avoidance model based on the velocity obstacle method was established. Thereafter, an eccentric expansion operation on traffic boats was proposed to ensure a reasonable balance between safety and the rules of COLREGS. The expansion parameters were set according to the rules of COLREGS and the risk level of collision. Then, the collision avoidance parameters were calculated based on the aforementioned motion model. With the use of MATLAB and Unity software, a semi-physical simulation platform was established to perform the avoidance simulation experiment under different situations. Results show the validity, reliability and intellectuality of the algorithm. This research can be used for intelligent collision avoidance of unmanned surface vehicle and other automatic driving ships.


2018 ◽  
Vol 170 ◽  
pp. 351-360 ◽  
Author(s):  
A. Lifei Song ◽  
B. Yiran Su ◽  
C. Zaopeng Dong ◽  
D. Wei Shen ◽  
E. Zuquan Xiang ◽  
...  

Author(s):  
Sam Weckx ◽  
Bastiaan Vandewal ◽  
Erwin Rademakers ◽  
Karel Janssen ◽  
Kurt Geebelen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document