scholarly journals Simulations of the Concentration Fields of Rosette-Type Multiport Buoyant Discharges Using Combined CFD and Multigene Genetic Programming Techniques

2021 ◽  
Vol 9 (11) ◽  
pp. 1311
Author(s):  
Xiaohui Yan ◽  
Yan Wang ◽  
Abdolmajid Mohammadian ◽  
Jianwei Liu

Rosette-type diffusers are becoming popular nowadays for discharging wastewater effluents. Effluents are known as buoyant jets if they have a lower density than the receiving water, and they are often used for municipal and desalination purposes. These buoyant effluents discharged from rosette-type diffusers are known as rosette-type multiport buoyant discharges. Investigating the mixing properties of these effluents is important for environmental impact assessment and optimal design of the diffusers. Due to the complex mixing and interacting processes, most of the traditional simple methods for studying free single jets become invalid for rosette-type multiport buoyant discharges. Three-dimensional computational fluid dynamics (3D CFD) techniques can satisfactorily model the concentration fields of rosette-type multiport buoyant discharges, but these techniques are typically computationally expensive. In this study, a new technique of simulating rosette-type multiport buoyant discharges using combined 3D CFD and multigene genetic programming (MGGP) techniques is developed. Modeling the concentration fields of rosette-type multiport buoyant discharges using the proposed approach has rarely been reported previously. A validated numerical model is used to carry out extensive simulations, and the generated dataset is used to train and test MGGP-based models. The study demonstrates that the proposed method can provide reasonable predictions and can significantly improve the prediction efficiency.

2019 ◽  
Vol 7 (8) ◽  
pp. 246 ◽  
Author(s):  
Xiaohui Yan ◽  
Abdolmajid Mohammadian

A new approach based on the multigene genetic-programming (MGGP) technique is proposed to predict initial dilution of vertical buoyant jets subjected to lateral confinement. The models are trained and tested using experimental data, and the good matches demonstrate the generalization and predictive capabilities of the evolved MGGP-based models. The best Pareto-optimal MGGP-based model is also compared with the model evolved using a single-gene genetic-programming (SGGP) algorithm and an existing regression-based empirical equation. The comparisons reveal the superiority of the MGGP-based model. This study confirms that the MGGP technique is promising in evolving an explicit, accurate, and compact model, and the developed models can be employed to estimate effectively and efficiently the dilution properties of a laterally confined vertical buoyant jet.


Geosciences ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 60
Author(s):  
Viacheslav Glinskikh ◽  
Oleg Nechaev ◽  
Igor Mikhaylov ◽  
Kirill Danilovskiy ◽  
Vladimir Olenchenko

This paper is dedicated to the topical problem of examining permafrost’s state and the processes of its geocryological changes by means of geophysical methods. To monitor the cryolithozone, we proposed and scientifically substantiated a new technique of pulsed electromagnetic cross-well sounding. Based on the vector finite-element method, we created a mathematical model of the cross-well sounding process with a pulsed source in a three-dimensional spatially heterogeneous medium. A high-performance parallel computing algorithm was developed and verified. Through realistic geoelectric models of permafrost with a talik under a highway, constructed following the results of electrotomography field data interpretation, we numerically simulated the pulsed sounding on the computing resources of the Siberian Supercomputer Center of SB RAS. The simulation results suggest the proposed system of pulsed electromagnetic cross-well monitoring to be characterized by a high sensitivity to the presence and dimensions of the talik. The devised approach can be oriented to addressing a wide range of issues related to monitoring permafrost rocks under civil and industrial facilities, buildings, and constructions.


2000 ◽  
Vol 6 (3) ◽  
pp. 82-85 ◽  
Author(s):  
J.A. van Kan ◽  
T. Osipowicz ◽  
F. Watt ◽  
J. L. Sanchez

2021 ◽  
Vol 7 (6) ◽  
pp. eabe3902
Author(s):  
Martin Rieu ◽  
Thibault Vieille ◽  
Gaël Radou ◽  
Raphaël Jeanneret ◽  
Nadia Ruiz-Gutierrez ◽  
...  

While crucial for force spectroscopists and microbiologists, three-dimensional (3D) particle tracking suffers from either poor precision, complex calibration, or the need of expensive hardware, preventing its massive adoption. We introduce a new technique, based on a simple piece of cardboard inserted in the objective focal plane, that enables simple 3D tracking of dilute microparticles while offering subnanometer frame-to-frame precision in all directions. Its linearity alleviates calibration procedures, while the interferometric pattern enhances precision. We illustrate its utility in single-molecule force spectroscopy and single-algae motility analysis. As with any technique based on back focal plane engineering, it may be directly embedded in a commercial objective, providing a means to convert any preexisting optical setup in a 3D tracking system. Thanks to its precision, its simplicity, and its versatility, we envision that the technique has the potential to enhance the spreading of high-precision and high-throughput 3D tracking.


2018 ◽  
Vol 37 (6) ◽  
pp. 578-589 ◽  
Author(s):  
Imane Boumanchar ◽  
Younes Chhiti ◽  
Fatima Ezzahrae M’hamdi Alaoui ◽  
Abdelaziz Sahibed-dine ◽  
Fouad Bentiss ◽  
...  

Municipal solid waste (MSW) management presents an important challenge for all countries. In order to exploit them as a source of energy, a knowledge of their calorific value is essential. In fact, it can be experimentally measured by an oxygen bomb calorimeter. This process is, however, expensive. In this light, the purpose of this paper was to develop empirical models for the prediction of MSW higher heating value (HHV) from ultimate analysis. Two methods were used: multiple regression analysis and genetic programming formalism. Both techniques gave good results. Genetic programming, however, provides more accuracy compared to published works in terms of a great correlation coefficient (CC) and a low root mean square error (RMSE).


2016 ◽  
Vol 23 (5) ◽  
pp. 1210-1215 ◽  
Author(s):  
Jonathan Logan ◽  
Ross Harder ◽  
Luxi Li ◽  
Daniel Haskel ◽  
Pice Chen ◽  
...  

Recent progress in the development of dichroic Bragg coherent diffractive imaging, a new technique for simultaneous three-dimensional imaging of strain and magnetization at the nanoscale, is reported. This progress includes the installation of a diamond X-ray phase retarder at beamline 34-ID-C of the Advanced Photon Source. The performance of the phase retarder for tuning X-ray polarization is demonstrated with temperature-dependent X-ray magnetic circular dichroism measurements on a gadolinium foil in transmission and on a Gd5Si2Ge2crystal in diffraction geometry with a partially coherent, focused X-ray beam. Feasibility tests for dichroic Bragg coherent diffractive imaging are presented. These tests include (1) using conventional Bragg coherent diffractive imaging to determine whether the phase retarder introduces aberrations using a nonmagnetic gold nanocrystal as a control sample, and (2) collecting coherent diffraction patterns of a magnetic Gd5Si2Ge2nanocrystal with left- and right-circularly polarized X-rays. Future applications of dichroic Bragg coherent diffractive imaging for the correlation of strain and lattice defects with magnetic ordering and inhomogeneities are considered.


1978 ◽  
Vol 56 (7) ◽  
pp. 928-935
Author(s):  
C. S. Lai

The method of self-similar solution of partial differential equations is applied to the one-, two-, and three-dimensional inhomogeneous thermal conduction equations with the thermometric conductivities χ ~ rmWn. Analytical solutions are obtained for the case that the total amount of heat is conserved. For the case that the temperature is maintained constant at r = 0, a new technique of the series solution about the point of intercept is proposed to solve the resultant nonlinear differential equations. The solutions obtained are useful in studying the thermal conduction characteristics of some incompressible fluids.


Sign in / Sign up

Export Citation Format

Share Document