scholarly journals Coupled Thermal-Hydraulic Analysis and Species Mass Transport in a Versatile Experimental Salt Irradiation Loop (VESIL) Using CTF

2021 ◽  
Vol 2 (3) ◽  
pp. 309-317
Author(s):  
Samuel A. Walker ◽  
Abdalla Abou-Jaoude ◽  
Zack Taylor ◽  
Robert K. Salko ◽  
Wei Ji

With the resurgence of interest in molten salt reactors, there is a need for new experiments and modeling capabilities to characterize the unique phenomena present in this fluid fuel system. A Versatile Experimental Salt Irradiation Loop (VESIL) is currently under investigation at Idaho National Laboratory to be placed in the Advanced Test Reactor (ATR). One of the key phenomena this proposed experiment plans to elucidate is fission product speciation in the fuel-salt and the subsequent effects this has on the fuel-salt properties, source term generation, and corrosion control. Specifically, noble gases (Xe & Kr) will bubble out to a plenum or off-gas system, and noble metals (Mo, Tc, Te, etc.) will precipitate and deposit in specific zones in the loop. This work extends the mass transfer and species interaction models in CTF (Coolant-Boiling in Rod Arrays—Two Fluids) and applies these models to give a preliminary estimation of fission product behavior in the proposed VESIL design. A noble metal–helium bubble mass transfer model is coupled with the thermal-hydraulic results from CTF to determine the effectiveness of this insoluble fission product (IFP) extraction method for VESIL. Amounts of IFP species extracted to the off-gas system and species distributions in VESIL after a 60-day ATR cycle are reported.

Author(s):  
Grant L. Hawkes ◽  
James W. Sterbentz ◽  
John T. Maki

A thermal analysis was performed for the Advanced Gas Reactor test experiment (AGR-3/4) with time-varying gas gaps. The experiment was irradiated at the Advanced Test Reactor (ATR) at the Idaho National Laboratory (INL). Several fuel irradiation experiments are planned for the AGR Fuel Development and Qualification Program that supports the development of the Very-High-Temperature Gas-Cooled Reactor (VHTR) under the Next-Generation Nuclear Plant (NGNP) project. AGR-3/4 combines two tests in a series of planned AGR experiments to test tristructural-isotropic (TRISO)-coated, low-enriched uranium oxy-carbide fuel. Forty-eight TRISO-fueled compacts were inserted into 12 separate capsules for the experiment (four compacts per capsule). The purpose of this analysis was to calculate the temperatures of each compact and graphite layer to obtain daily average temperatures using time (fast neutron fluence)-varying gas gaps and to compare with experimentally measured thermocouple data. A finite-element heat transfer model was created for each capsule using the commercial code ABAQUS. Model results are compared to thermocouple data taken during the experiment.


Author(s):  
S. Blaine Grover ◽  
David A. Petti ◽  
Michael E. Davenport

The United States Department of Energy’s Next Generation Nuclear Plant (NGNP) Advanced Gas Reactor (AGR) Fuel Development and Qualification Program is irradiating up to seven low enriched uranium (LEU) tri-isotopic (TRISO) particle fuel (in compact form) experiments in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). These irradiations and fuel development are being accomplished to support development of the next generation reactors in the United States. The experiments will be irradiated over the next several years to demonstrate and qualify new TRISO coated particle fuel for use in high temperature gas reactors. The goals of the experiments are to provide irradiation performance data to support fuel process development, to qualify fuel for normal operating conditions, to support development and validation of fuel performance and fission product transport models and codes, and to provide irradiated fuel and materials for post irradiation examination (PIE) and safety testing. The experiments, which will each consist of several independent capsules, will be irradiated in an inert sweep gas atmosphere with individual on-line temperature monitoring and control of each capsule. The sweep gas will also have on-line fission product monitoring on its effluent to track performance of the fuel in each individual capsule during irradiation. The first experiment (designated AGR-1) started irradiation in December 2006 and was completed in November 2009. The second experiment (AGR-2) started irradiation in June 2010 and is currently scheduled to be completed in September 2013. The third and fourth experiments have been combined into a single experiment designated (AGR-3/4), which started its irradiation in December 2011 and is currently scheduled to be completed in April 2014. Since the purpose of this combined experiment is to provide data on fission product migration and retention in the NGNP reactor, the design of this experiment is significantly different from the first two experiments, though the control and monitoring systems are extremely similar. The design of the experiment will be discussed followed by its progress and status to date.


Author(s):  
Taide Tan ◽  
Huajun Chen ◽  
Yitung Chen ◽  
Hsuan-Tsung Hsieh

An improved theoretical model was developed to predict the mass transfer controlled corrosion/precipitation in nonisothermal LBE pipe systems. In this mass transfer model, a turbulent core region and a laminar sub-layer region have been considered separately in the total mass transfer to the transferring corrosion product from the wall of the pipe. Two sets of mass transfer equations have been solved respectively both in the turbulent core region and sub-layer region. Following the model development, both of the local corrosion/precipitation rate and bulk concentration were calculated and a theoretic study has been made to illustrate the effects of the axial temperature profile on the corrosion/precipitation rate and buck concentration by applying present model to DELTA loop in Los Alamos National Laboratory. Numerical simulations were preceded in the open pipe systems and the results were analyzed. The solutions obtained also can be extended to the more general problems of high Schmidt mass transfer in the developed turbulent wall-bounded shear flows.


Author(s):  
Guodong Wang ◽  
Zhe Wang

The AP1000 containment model has been developed by using WGOTHIC version 4.2 code. Condensation heat and mass transfer from the volumes to the containment shell, conduction through the shell, and evaporation from the shell to the riser were all calculated by using the special CLIMEs model. In this paper, the latest GOTHIC version 8.0 code is used to model both condensation and evaporation heat and mass transfer process. An improved heat and mass transfer model, the diffusion layer model (DLM), is adopted to model the condensation on the inside wall of containment. The Film heat transfer coefficient option is used to model the evaporation on the outside wall of containment. As a preliminary code consolidation effort, it is possible to use GOTHIC 8.0 code as a tool to analysis the AP1000 containment response.


Sign in / Sign up

Export Citation Format

Share Document