scholarly journals Colonization of Solanum melongena and Vitis vinifera Plants by Botrytis cinerea Is Strongly Reduced by the Exogenous Application of Tomato Systemin

2020 ◽  
Vol 7 (1) ◽  
pp. 15
Author(s):  
Donata Molisso ◽  
Mariangela Coppola ◽  
Anna Maria Aprile ◽  
Concetta Avitabile ◽  
Roberto Natale ◽  
...  

Plant defense peptides are able to control immune barriers and represent a potential novel resource for crop protection. One of the best-characterized plant peptides is tomato Systemin (Sys) an octadecapeptide synthesized as part of a larger precursor protein. Upon pest attack, Sys interacts with a leucine-rich repeat receptor kinase, systemin receptor SYR, activating a complex intracellular signaling pathway that leads to the wound response. Here, we demonstrated, for the first time, that the direct delivery of the peptide to Solanum melongena and Vitis vinifera plants protects from the agent of Grey mould (Botrytis cinerea). The observed disease tolerance is associated with the increase of total soluble phenolic content, the activation of antioxidant enzymes, and the up-regulation of defense-related genes in plants treated with the peptide. Our results suggest that in treated plants, the biotic defense system is triggered by the Sys signaling pathway as a consequence of Sys interaction with a SYR-like receptor recently found in several plant species, including those under investigation. We propose that this biotechnological use of Sys, promoting defense responses against invaders, represents a useful tool to integrate into pest management programs for the development of novel strategies of crop protection.

2021 ◽  
Vol 17 ◽  
pp. 174480692110033
Author(s):  
Travis Okerman ◽  
Taylor Jurgenson ◽  
Madelyn Moore ◽  
Amanda H Klein

Research presented here sought to determine if opioid induced tolerance is linked to activity changes within the PI3Kγ-AKT-cGMP-JNK intracellular signaling pathway in spinal cord or peripheral nervous systems. Morphine or saline injections were given subcutaneously twice a day for five days (15 mg/kg) to male C57Bl/6 mice. A separate cohort of mice received spinal nerve ligation (SNL) one week prior to the start of morphine tolerance. Afterwards, spinal cord, dorsal root ganglia, and sciatic nerves were isolated for quantifying total and phosphorylated- JNK levels, cGMP, and gene expression analysis of Pik3cg, Akt1, Pten, and nNos1. This pathway was downregulated in the spinal cord with increased expression in the sciatic nerve of morphine tolerant and morphine tolerant mice after SNL. We also observed a significant increase in phosphorylated- JNK levels in the sciatic nerve of morphine tolerant mice with SNL. Pharmacological inhibition of PI3K or JNK, using thalidomide, quercetin, or SP600125, attenuated the development of morphine tolerance in mice with SNL as measured by thermal paw withdrawal. Overall, the PI3K/AKT intracellular signaling pathway is a potential target for reducing the development of morphine tolerance in the peripheral nervous system. Continued research into this pathway will contribute to the development of new analgesic drug therapies.


2016 ◽  
Vol 25 (2) ◽  
pp. 195-204
Author(s):  
Arisa Higa ◽  
Kyoko Oka ◽  
Michiko Kira-Tatsuoka ◽  
Shougo Tamura ◽  
Satoshi Itaya ◽  
...  

1995 ◽  
Vol 270 (47) ◽  
pp. 27991-27994 ◽  
Author(s):  
Tetsuro Haruta ◽  
Aaron J. Morris ◽  
David W. Rose ◽  
James G. Nelson ◽  
Michael Mueckler ◽  
...  

1999 ◽  
Vol 79 ◽  
pp. 278
Author(s):  
Mitsue Shibata ◽  
Kazuhiro Kanaoka ◽  
Yasuhiro Kobayashi ◽  
Yuzo Kato ◽  
Hideaki Sakai

2019 ◽  
Vol 20 (7) ◽  
pp. 1682
Author(s):  
Shujie Ning ◽  
Zixu Wang ◽  
Jing Cao ◽  
Yulan Dong ◽  
Yaoxing Chen

Previous studies have demonstrated that monochromatic light affects plasma melatonin (MEL) levels, which in turn regulates hepatic insulin-like growth factor I (IGF-I) secretion via the Mel1c receptor. However, the intracellular signaling pathway initiated by Mel1c remains unclear. In this study, newly hatched broilers, including intact, sham operation, and pinealectomy groups, were exposed to either white (WL), red (RL), green (GL), or blue (BL) light for 14 days. Experiments in vivo showed that GL significantly promoted plasma MEL formation, which was accompanied by an increase in the MEL receptor, Mel1c, as well as phosphorylated extracellular regulated protein kinases (p-ERK1/2), and IGF-I expression in the liver, compared to the other light-treated groups. In contrast, this GL stimulation was attenuated by pinealectomy. Exogenous MEL elevated the hepatocellular IGF-I level, which is consistent with increases in cyclic adenosine monophosphate (cAMP), Gαq, phosphorylated protein kinase C (p-PKC), and p-ERK1/2 expression. However, the Mel1c selective antagonist prazosin suppressed the MEL-induced expression of IGF-I, Gαq, p-PKC, and p-ERK1/2, while the cAMP concentration was barely affected. In addition, pretreatment with Ym254890 (a Gαq inhibitor), Go9863 (a PKC inhibitor), and PD98059 (an ERK1/2 inhibitor) markedly attenuated MEL-stimulated IGF-I expression and p-ERK1/2 activity. These results indicate that Mel1c mediates monochromatic GL-stimulated IGF-I synthesis through intracellular Gαq/PKC/ERK signaling.


2009 ◽  
Vol 83 (22) ◽  
pp. 11665-11672 ◽  
Author(s):  
Ewan F. Dunn ◽  
Rachel Fearns ◽  
John H. Connor

ABSTRACT Many viruses activate the phosphatidylinositol 3′-kinase (PI3k)/Akt intracellular signaling pathway to promote viral replication. We have analyzed whether a rapidly replicating rhabdovirus, vesicular stomatitis virus (VSV), requires the PI3k/Akt signaling pathway for its replication. Through the use of chemical inhibitors of PI3k and Akt, we show that VSV replication and cytopathic effects do not require activation of these kinases. Inhibitors that block the activating phosphorylations of Akt at threonine 308 (Thr308) and serine 473 (Ser473) did not inhibit VSV protein expression or the induction of the cytopathic effects of VSV. One compound, Akt inhibitor Akt-IV, inhibited the replication of VSV, respiratory syncytial virus, and vaccinia virus but increased the phosphorylation of Akt at positions Thr308 and Ser473 and did not inhibit Akt kinase activity in vitro. Together, our data suggest that the PI3k/Akt pathway is of limited relevance to the replication of VSV but that Akt inhibitor Akt-IV is a novel broad-spectrum antiviral compound with a mechanism differing from that of its previously reported effect on the PI3k/Akt pathway. Identification of other targets for this compound may define a new approach for blocking virus replication.


2005 ◽  
Vol 145 (2) ◽  
pp. 105-110 ◽  
Author(s):  
Nozomi Iwanaga ◽  
Makoto Kamachi ◽  
Kouichiro Aratake ◽  
Yasumori Izumi ◽  
Hiroaki Ida ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document