scholarly journals mRNA Inventory of Extracellular Vesicles from Ustilago maydis

2021 ◽  
Vol 7 (7) ◽  
pp. 562
Author(s):  
Seomun Kwon ◽  
Oliver Rupp ◽  
Andreas Brachmann ◽  
Christopher Frederik Blum ◽  
Anton Kraege ◽  
...  

Extracellular vesicles (EVs) can transfer diverse RNA cargo for intercellular communication. EV-associated RNAs have been found in diverse fungi and were proposed to be relevant for pathogenesis in animal hosts. In plant-pathogen interactions, small RNAs are exchanged in a cross-kingdom RNAi warfare and EVs were considered to be a delivery mechanism. To extend the search for EV-associated molecules involved in plant-pathogen communication, we have characterised the repertoire of EV-associated mRNAs secreted by the maize smut pathogen, Ustilago maydis. For this initial survey, we examined EV-enriched fractions from axenic filamentous cultures that mimic infectious hyphae. EV-associated RNAs were resistant to degradation by RNases and the presence of intact mRNAs was evident. The set of mRNAs enriched inside EVs relative to the fungal cells are functionally distinct from those that are depleted from EVs. mRNAs encoding metabolic enzymes are particularly enriched. Intriguingly, mRNAs of some known effectors and other proteins linked to virulence were also found in EVs. Furthermore, several mRNAs enriched in EVs are also upregulated during infection, suggesting that EV-associated mRNAs may participate in plant-pathogen interactions.

Author(s):  
Seomun Kwon ◽  
Oliver Rupp ◽  
Andreas Brachmann ◽  
Alexander Goesmann ◽  
Michael Feldbrügge

Extracellular vesicles (EVs) can transfer diverse RNA cargo for intercellular signalling. EV-associated RNAs have been found in diverse fungi and were proposed to be relevant for pathogenesis in animal hosts. In plant-pathogen interactions, small RNAs are exchanged in a cross-kingdom RNAi warfare and EVs were considered to be a delivery mechanism. To extend the search for EV-associated molecules involved in plants-pathogen communication, we have characterised the repertoire of EV-associated mRNAs secreted by the maize smut pathogen, Ustilago maydis. For this initial survey, EVs were isolated from axenic filamentous cultures that mimic infectious hyphae. The EV-associated RNAs were resistant to degradation by RNases and the presence of intact mRNAs was evident. The set of mRNAs enriched inside EVs relative to the fungal cells are functionally distinct from those that are depleted from EVs, particularly overrepresented in metabolic enzyme activities. Intriguingly, mRNAs of some known effectors and other proteins linked to virulence were found in EVs. Furthermore, several mRNAs enriched in EVs are also upregulated during infection, suggesting that EV-associated mRNAs may participate in plant-pathogen interaction.


F1000Research ◽  
2018 ◽  
Vol 7 ◽  
pp. 1633 ◽  
Author(s):  
Yan Zhao ◽  
Xiangxiu Liang ◽  
Jian-Min Zhou

Plants and pathogenic microbes are engaged in constant attacks and counterattacks at the interface of the interacting organisms. Much of the molecular warfare involves cross-kingdom trafficking of proteins, nucleic acids, lipids, and metabolites that act as toxins, inhibitors, lytic enzymes, and signaling molecules. How various molecules are transported across the boundaries of plants and pathogens has remained largely unknown until now. Extracellular vesicles have emerged as likely carriers of molecular ammunition for both plants and pathogens. Recent advances are beginning to show how extracellular vesicles serve as powerful vehicles that transfer small RNAs from plants to fungal cells to diminish pathogen virulence and from fungi to plant cells to dampen host immunity.


Author(s):  
Dongdong Niu ◽  
Zhaoyun Wang ◽  
Shune Wang ◽  
Lulu Qiao ◽  
Hongwei Zhao

2020 ◽  
Vol 18 (4) ◽  
pp. 467-482
Author(s):  
Polina Ya. Tretiakova ◽  
Aleksandr A. Soloviev

Double-stranded small RNAs (dsRNA) perform various regulatory functions via RNA-interference. Additionally, they can be transported between various plant species and their pathogens and pests via extracellular vesicles, protecting RNA from nucleases. Plants secrete short dsRNA molecules to defend themselves against pathogens. The latter also use small RNAs when infecting crops. Some dsRNAs of pathogens are known as ribonucleic effectors. Host-induced gene silencing (HIGS) was shown to be effective when breeding resistant varieties and analyzing plant-pathogen interactions. However, complexity of transgenesis and society fear of genetically modified products make HIGS application difficult. The appearance of a new strategy based on plant spraying with dsRNA gave a new perspective of plant protection. Currently such a strategy requires accurate studying as well as the development of efficient systems stably producing high-quality dsRNA.


2021 ◽  
Author(s):  
Qingfeng Zhou ◽  
Kang Ma ◽  
Huanhuan Hu ◽  
Xiaolong Xing ◽  
Xuan Huang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document