scholarly journals A Multivariate Approach to Evaluate Reduced Tillage Systems and Cover Crop Sustainability

Land ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 55
Author(s):  
Felice Sartori ◽  
Ilaria Piccoli ◽  
Riccardo Polese ◽  
Antonio Berti

The evaluation of the effects of conservation agriculture during the transition from conventional tillage to no-tillage requires numerous indicators to be considered. For this purpose, we monitored changes in a multi-parameter dataset during a three-year experiment that combined three tillage intensities (conventional tillage—CT; minimum tillage—MT; and no tillage—NT) with three soil covering managements (tillage radish cover crop, winter wheat cover crop and bare soil). Using a multivariate analysis, we developed a Relative Sustainability Index (RSI) based on 11 physical (e.g., bulk density and penetration resistance), chemical (e.g., soil organic carbon and pH) and biological soil properties (e.g., earthworm density) to evaluate cropping systems sustainability. The RSI was most affected by tillage intensity showing higher RSI values (i.e., better performances) in reduced tillage systems. Specifically, the RSI under NT was 42% greater than that of CT and 13% greater than that of MT. Soil covering had little impact on the RSI. Among the tested parameters, the RSI was increased most by saturated hydraulic conductivity (+193%) and earthworm density (+339%) across CT and NT treatments.to. Our results suggest that conservation agriculture and, particularly, reduced tillage systems, have the potential to increase farm environmental and agronomic sustainability.

2021 ◽  
Author(s):  
Felice Sartori ◽  
Ilaria Piccoli ◽  
Riccardo Polese ◽  
Antonio Berti

Abstract. Conservation agriculture (CA) relies on two key practices to improve agricultural sustainability—reduced tillage and cover crop usage. Despite known soil physics benefits (reduced soil compaction and strength, enhanced soil porosity and permeability), inconsistent reports on short-term CA results have limited its adoption in European agroecosystems. To elucidate the short-term effects, a three-year experiment in the low-lying Venetian plain (Northern Italy) was undertaken. Bulk density, penetration resistance, and soil hydraulic measures were used to evaluate results obtained by combining three tillage intensities (conventional tillage (CT), minimum tillage (MT), no tillage (NT)) with three winter soil coverages (bare soil (BS), tillage radish cover crop (TR), winter wheat cover crop (WW)). Among the tillage methods and soil layers, CT, on average, reduced BD (1.42 g cm−3) and PR (1.64 MPa) better in the 0–30 cm tilled layer. Other treatments yielded higher values (+4 % BD and +3.1 % PR) in the same layer. Across the soil profile, reduced tillage coupled with WW improved soil physics even below the tilled layer, as evidenced by root growth-limiting threshold declines (−11 % in BD values > 1.55 g cm−3 and −7 % in PR values > 2.5 MPa). Soil hydraulic measures confirmed this positive behaviour; NT combined with either BS or WW produced a soil saturated conductivity of 2.12 × 10−4 m s−1 (four-fold that of all other treatments). Likewise, sorptivity increased in NT combined with BS versus other treatments (3.64 × 10−4 m s−1 vs an all-treatment average of 7.98 × 10−5 m s−1). Our results suggest that despite some measure declines due to reduced tillage, the strategy enhances soil physics. In the short term, cover crop WW moderately increased physical soil parameters, whereas TR had negligible effects. This study demonstrates that CA effects require monitoring several soil physical parameters.


2021 ◽  
Vol 41 (2) ◽  
Author(s):  
Blessing Mhlanga ◽  
Laura Ercoli ◽  
Elisa Pellegrino ◽  
Andrea Onofri ◽  
Christian Thierfelder

AbstractConservation agriculture has been promoted to sustainably intensify food production in smallholder farming systems in southern Africa. However, farmers have rarely fully implemented all its components, resulting in different combinations of no-tillage, crop rotation, and permanent soil cover being practiced, thus resulting in variable yield responses depending on climatic and soil conditions. Therefore, it is crucial to assess the effect of conservation agriculture components on yield stability. We hypothesized that the use of all three conservation agriculture components would perform the best, resulting in more stable production in all environments. We evaluated at, eight trial locations across southern Africa, how partial and full implementation of these components affected crop yield and yield stability compared with conventional tillage alone or combined with mulching and/or crop rotation. Grain yield and shoot biomass of maize and cowpea were recorded along with precipitation for 2 to 5 years. Across different environments, the addition of crop rotation and mulch to no-tillage increased maize grain by 6%, and the same practices added to conventional tillage led to 13% yield increase. Conversely, adding only mulch or crop rotation to no-tillage or conventional tillage led to lower or equal maize yield. Stability analyses based on Shukla’s index showed for the first time that the most stable systems are those in which mulch is added without crop rotation. Moreover, the highest yielding systems were the least stable. Finally, additive main effects and multiplicative interaction analysis allowed clarifying that mulch added to no-tillage gives stable yields on sandy soil with high rainfall. Similarly, mulch added to conventional tillage gives stable yield on sandy soil, but under low rainfall. This is the first study that highlighted the crucial role of mulch to enhance the stability and resilience of cropping systems in southern Africa, supporting their adaptability to climate change.


2011 ◽  
Vol 48 (2) ◽  
pp. 159-175 ◽  
Author(s):  
J. KIHARA ◽  
A. BATIONO ◽  
B. WASWA ◽  
J. M. KIMETU ◽  
B. VANLAUWE ◽  
...  

SUMMARYReduced tillage is said to be one of the potential ways to reverse land degradation and ultimately increase the productivity of degrading soils of Africa. We hypothesised that crop yield following a modest application of 2 t ha−1 of crop residue in a reduced tillage system is similar to the yield obtained from a conventional tillage system, and that incorporation of legumes in a cropping system leads to greater economic benefits as opposed to a cropping system involving continuous maize. Three cropping systems (continuous maize monocropping, legume/maize intercropping and rotation) under different tillage and residue management systems were tested in sub-humid western Kenya over 10 seasons. While soybean performed equally well in both tillage systems throughout, maize yield was lower in reduced than conventional tillage during the first five seasons but no significant differences were observed after season 6. Likewise, with crop residue application, yields in conventional and reduced tillage systems are comparable after season 6. Nitrogen and phosphorus increased yield by up to 100% compared with control. Gross margins were not significantly different among the cropping systems being only 6 to 39% more in the legume–cereal systems relative to similar treatments in continuous cereal monocropping system. After 10 seasons of reduced tillage production, the economic benefits for our cropping systems are still not attractive for a switch from the conventional to reduced tillage.


Weed Science ◽  
1994 ◽  
Vol 42 (2) ◽  
pp. 205-209 ◽  
Author(s):  
Douglas D. Buhler ◽  
David E. Stoltenberg ◽  
Roger L. Becker ◽  
Jeffery L. Gunsolus

Management of perennial weeds is a major concern in reduced-tillage cropping systems. Field research was conducted at Nashua, IA, from 1977 through 1990 to evaluate the long-term impacts of tillage and cropping patterns on perennial weed populations in corn and soybean production. Continuous corn and a corn/soybean rotation were conducted utilizing moldboard plow, chisel plow, ridge tillage, and no-tillage systems. The research area was free of established perennial weed species at the initiation of the experiment in 1977. Hemp dogbane was observed by 1980, with the greatest densities in no-tillage. By 1990, continuous corn had greater hemp dogbane densities with no-tillage than other tillage system by crop rotation treatments. American germander densities were not affected by tillage systems in 1980 and 1981, but by 1990, corn/soybean rotations had greater densities in moldboard plow than other tillage systems. Field bindweed developed primarily in the corn/soybean rotations with the greatest densities occurring in no-tillage. Greater and more diverse populations of perennial weeds developed in reduced-tillage systems than in the moldboard plow system. However, practices used to control annual weeds and environmental factors interacted with tillage to regulate perennial weed populations.


2000 ◽  
Vol 15 (2) ◽  
pp. 79-87 ◽  
Author(s):  
J.R. Teasdale ◽  
R.C. Rosecrance ◽  
C.B. Coffman ◽  
J.L. Starr ◽  
I.C. Paltineanu ◽  
...  

AbstractSustainable production systems are needed to maintain soil resources and reduce environmental contamination on erodible lands that are incompatible with tillage-intensive operations. A long-term cropping systems comparison was established at Beltsville, Maryland, on a site with 2 to 15% slope to evaluate the efficacy of sustainable strategies compatible with reduced-tillage systems. All systems followed a 2-year rotation of corn the first year and winter wheat followed by soybean the second year. Treatments included (1) no-tillage system with recommended fertilizer and herbicide inputs, (2) crownvetch living mulch system with similar inputs to the no-tillage system, (3) cover crop system including a hairy vetch cover crop before corn and a wheat cover crop before soybean with reduced fertilizer and herbicide inputs, and (4) manure system including crimson clover green manure plus cow manure for nutrient sources, chisel plow/disk for incorporating manure, and rotary hoe plus cultivation for weed control. Results from the initial 4 years demonstrated the relative productivity of these systems. Corn yields were similar in the no-tillage and cover crop systems in each year; both systems averaged 7.8 Mg ha-1 compared to 5.7 Mg ha-1 in both the crownvetch and manure systems. Wheat yields were highest in the manure system in the first 2 years and in the crownvetch system in the last 2 years. Soybean yields were highest in the cover crop system in all years. The manure system usually had lower yields than the highest yielding systems, partly because of competition from uncontrolled weeds. Several measures of the efficiency of grain production were evaluated. The no-tillage system produced the most grain per total vegetative biomass throughout the rotation. The cover crop system produced the most grain per unit of external nitrogen input and, along with the no-tillage system, had the highest corn water-use efficiency. The cover crop system also recycled the most vegetative residues and nutrients of all systems. No single system performed best according to all measures of comparison, suggesting that trade-offs will be required when choosing production systems.


2001 ◽  
Vol 91 (6) ◽  
pp. 534-545 ◽  
Author(s):  
Walber L. Gavassoni ◽  
Gregory L. Tylka ◽  
Gary P. Munkvold

The dynamics of Heterodera glycines spatial patterns were studied under different tillage systems in two naturally infested soybean fields in Iowa from 1994 to 1997. At each location, there were four different tillage treatments (conventional tillage, reduced tillage, ridge tillage, and no tillage). Soil samples were taken from 98 contiguous quadrats (5.2 m2) per plot in the fall of 1994, before any tillage was performed, and in the spring of the following 3 years shortly after planting. Cysts were extracted from soil samples by elutriation and counted, and eggs were extracted from cysts and enumerated. Spatial patterns of H. glycines populations were characterized by geostatistical analysis and variance-to-mean (VM) ratios. Semivariance values were calculated for cyst and egg densities and semivariograms were constructed. In general, there was greater spatial dependence among cyst populations than egg populations. In one field with a strongly aggregated initial H. glycines population, tillage practices resulted in changes in spatial patterns of H. glycines populations, characterized by spherical-model semivariogram parameters (sill, nugget effect, and range of spatial dependence). These parameters indicated increasing aggregation over time in no tillage and ridge tillage treatments, but decreasing aggregation in reduced and conventional tillage treatments. There was an increase of 350% in sill values (maximum semivariance) for cyst populations after 3 years of no tillage, but in the conventional tillage treatment, sill values remained unchanged or decreased over time as tillage was implemented. Semivariograms for cyst and egg population densities revealed strong anisotropy (directional spatial dependence) along soybean rows, coincident with the direction of tillage practices. VM ratios for cyst counts increased each year in the no tillage and ridge tillage treatments, but decreased for 2 years in reduced tillage and conventional tillage treatments. Final VM ratios for cyst and egg counts were highest in the no tillage treatment. In a second field, with low initial aggregation of H. glycines populations, there was little measurable change in semivariogram parameters after 3 years of no tillage, but in the conventional tillage treatment, populations became less aggregated, as the range, sill, and the proportion of the sill explained by spatial dependence decreased for cyst population densities. Our results indicated that in soybean fields with initially aggregated populations of H. glycines, no tillage and ridge tillage systems promoted aggregation of the nematode population, whereas conventional and reduced tillage systems resulted in a less aggregated spatial pattern.


Weed Science ◽  
1980 ◽  
Vol 28 (6) ◽  
pp. 661-666 ◽  
Author(s):  
O. C. Burnside ◽  
G. A. Wicks

Atrazine [2-chloro-4-(ethylamino)-6-isopropylamino)-s-triazine] carryover under reduced or no-till row crop production systems was measured by planting oats (Avena sativaL.) the following year as a field bioassay during 1970 through 1976 at Lincoln and North Platte, Nebraska. Oat yields indicate that soil persistence of normal-use rates of atrazine into the subsequent year is only a minor residue problem under reduced tillage cropping systems. Atrazine carryover in soil was less of a problem under these reduced tillage systems as compared with prior experiments with conventional tillage systems across Nebraska.


2003 ◽  
Vol 93 (9) ◽  
pp. 1182-1189 ◽  
Author(s):  
A. Westphal ◽  
J. R. Smart

The population density of the reniform nematode, Rotylenchulus reniformis, was monitored at depths of 0 to 30, 30 to 60, 60 to 90, and 90 to 120 cm in a tillage and crop sequence trial in south Texas in 2000 and 2001. Main plots were subjected to three different tillage systems: conventional tillage (moldboard plowing and disking), ridge tillage, and no-tillage. Subplots were planted with three different crop sequences: spring cotton and fall corn every year; spring cotton and fall corn in one year, followed by corn for two years; and cotton followed by corn and then grain sorghum, one spring crop per year. The population density of R. reniformis on corn and grain sorghum was low throughout the soil profile. In plots planted with spring cotton and fall corn every year, fewer nematodes were found at depths of 60 to 120 cm in the no-tillage and ridge tillage systems than in the conventional tillage system. Population densities were lower at depths of 0 to 60 cm than at 60 to 120 cm. Soil moisture and cotton root length did not affect nematode population densities in the field. When soil was placed in pots and planted with cotton in the greenhouse, lower population densities developed in soil taken from depths of 0 to 60 cm than in soil from depths of 60 to 120 cm. Final nematode populations were similar in size in soil from the different tillage systems, but reproductive factors were higher in soil from plots with reduced-tillage systems than in soil from plots with conventional tillage. Reduced-tillage practices lowered the risk of increases in R. reniformis populations and reduced population densities following 2 years of non-hosts throughout soil depths, but population densities resurged to the same high levels as in soil planted with cotton every year during one season of cotton.


2011 ◽  
Vol 57 (No. 4) ◽  
pp. 186-192 ◽  
Author(s):  
Ž. Videnović ◽  
M. Simić ◽  
J. Srdić ◽  
Z. Dumanović

The effects of three tillage systems: no-tillage (NT), reduced tillage (RT) and conventional tillage (CT), and three levels of fertilization (0, 258 and 516 kg/ha NPK (58:18:24)), on the maize yield during ten years (1999–2008) were analyzed on the chernozem soil type in Zemun Polje, Serbia. Statistical analyses showed significant effects of all three factors i.e., year, soil tillage and amount of fertilizers, and their interactions on the maize yield. The ten-year averages showed that the highest yields were observed with CT (10.61 t/ha), while the averages with RT and NT were lower (8.99 t/ha and 6.85 t/ha, respectively). The results of the influence of the amount of the applied fertilizers on maize yield showed that the lowest yield was in the zero level of fertilization 7.71 t/ha, while the yield was raised when the 258 kg/ha and 516 kg/ha NPK were applied (9.18 t/ha and 9.56 t/ha, respectively). Analyzing the influence of the soil tillage systems on maize production with respect to the amounts of applied fertilizers, this research revealed the benefits of CT under the presented agroecological conditions, irrespective of the level of applied fertilizer.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Malika Laghrour ◽  
Rachid Moussadek ◽  
Rachid Mrabet ◽  
Rachid Dahan ◽  
Mohammed El-Mourid ◽  
...  

In Morocco, conservation agriculture, particularly no tillage systems, has become an alternative strategy to mitigate land degradation caused by conventional tillage in semiarid to arid regions. This paper is based on behaviour to tillage treatments of two Vertisols in Morocco. After 11 years of testing, soil organic matter content results showed a significant difference (P<0.05) only at soil surface (0–10 cm) in favour of no tillage and a variation of 30% at this depth. The results obtained after 32 years of testing showed a significant soil profile difference (P<0.05), up to 40 cm under no tillage compared to conventional tillage, and a variation of 54% at 5–10 cm. For total nitrogen, there was no significant effect between no tillage and conventional tillage at the soil surface after 11 years unlike the result obtained after 32 years. There are no significant differences in bulk density between tillage treatments at soil surface for both sites. The measurement of soil structural stability showed a significant effect (P<0.05) for all three tests and for both sites. This means that no tillage helped Vertisols to resist different climatic constraints, preserving environmental soil quality.


Sign in / Sign up

Export Citation Format

Share Document