scholarly journals Molecular Interactions between Two LMP2A PY Motifs of EBV and WW Domains of E3 Ubiquitin Ligase AIP4

Life ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 379
Author(s):  
Min-Duk Seo ◽  
Seung-Hyeon Seok ◽  
Ji-Hun Kim ◽  
Ji Woong Choi ◽  
Sung Jean Park ◽  
...  

Interactions involving Epstein–Barr virus (EBV) LMP2A and Nedd4 family E3 ubiquitin–protein ligases promote the ubiquitination of LMP2A-associated proteins, which results in the perturbation of normal B-cell signaling. Here, we solved the solution structure of the WW2 domain of hAIP4 and investigated the binding mode involving the N-terminal domain of LMP2A and the WW2 domain. The WW2 domain presented a conserved WW domain scaffold with a three-stranded anti-parallel β-sheet and bound two PY motifs via different binding mechanisms. Our NMR titration and ITC data demonstrated that the PY motifs of LMP2A can recognize and interact weakly with the XP groove of the WW2 domain (residues located around the third β-strand), and then residues between two PY motifs optimize the binding by interacting with the loop 1 region of the WW2 domain. In particular, the residue Val15 in the hairpin loop region between β1 and β2 of the WW2 domain exhibited unique changes depending on the terminal residues of the PY motif. This result suggested that the hairpin loop is responsible for additional interactions outside the XP groove, and this hypothesis was confirmed in a deuterium exchange experiment. These weak but wide interactions can stabilize the complex formed between the PY and WW domains.

2000 ◽  
Vol 20 (22) ◽  
pp. 8526-8535 ◽  
Author(s):  
Gösta Winberg ◽  
Liudmila Matskova ◽  
Fu Chen ◽  
Pamela Plant ◽  
Daniela Rotin ◽  
...  

ABSTRACT The latent membrane protein (LMP) 2A of Epstein-Barr virus (EBV) is implicated in the maintenance of viral latency and appears to function in part by inhibiting B-cell receptor (BCR) signaling. The N-terminal cytoplasmic region of LMP2A has multiple tyrosine residues that upon phosphorylation bind the SH2 domains of the Syk tyrosine kinase and the Src family kinase Lyn. The LMP2A N-terminal region also has two conserved PPPPY motifs. Here we show that the PPPPY motifs of LMP2A bind multiple WW domains of E3 protein-ubiquitin ligases of the Nedd4 family, including AIP4 and KIAA0439, and demonstrate that AIP4 and KIAA0439 form physiological complexes with LMP2A in EBV-positive B cells. In addition to a C2 domain and four WW domains, these proteins have a C-terminal Hect catalytic domain implicated in the ubiquitination of target proteins. LMP2A enhances Lyn and Syk ubiquitination in vivo in a fashion that depends on the activity of Nedd4 family members and correlates with destabilization of the Lyn tyrosine kinase. These results suggest that LMP2A serves as a molecular scaffold to recruit both B-cell tyrosine kinases and C2/WW/Hect domain E3 protein-ubiquitin ligases. This may promote Lyn and Syk ubiquitination in a fashion that contributes to a block in B-cell signaling. LMP2A may potentiate a normal mechanism by which Nedd4 family E3 enzymes regulate B-cell signaling.


2003 ◽  
Vol 332 (5) ◽  
pp. 1123-1130 ◽  
Author(s):  
Qiulong Huang ◽  
Andrew M. Petros ◽  
Herbert W. Virgin ◽  
Stephen W. Fesik ◽  
Edward T. Olejniczak

1991 ◽  
Vol 47 (2) ◽  
pp. 188-192 ◽  
Author(s):  
Jan W. Gratama ◽  
Mary M. Zutter ◽  
Janos Minarovits ◽  
Maria A. P. Oosterveer ◽  
E. Donnall Thomas ◽  
...  

1999 ◽  
Vol 73 (10) ◽  
pp. 8902-8906 ◽  
Author(s):  
Norbert Kienzle ◽  
Marion Buck ◽  
Sonia Greco ◽  
Kenia Krauer ◽  
Tom B. Sculley

ABSTRACT The cellular localization of the Epstein-Barr virus-encoded RK-BARF0 protein was analyzed by fluorescence microscopy and immunoblotting. The recombinant RK-BARF0 protein was found to be tightly bound to nuclear structures, whereas 16- to 20-kDa RK-BARF0 derivatives, generated by differential splicing of the RK-BARF0 transcript, were present throughout the cell. Moreover, a previously generated anti-RK-BARF0 rabbit serum was found to cross-react with cellular proteins, showing that the previously identified 30- to 35-kDa membrane-associated proteins do not represent RK-BARF0.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Hui-Ping He ◽  
Meng Luo ◽  
Yu-Lu Cao ◽  
Yu-Xin Lin ◽  
Hua Zhang ◽  
...  

Abstract Epstein-Barr virus (EBV) is a γ-herpesvirus associated with the occurrence of several human malignancies. BBRF2 and BSRF1 are two EBV tegument proteins that have been suggested to form a hetero-complex and mediate viral envelopment, but the molecular basis of their interaction and the functional mechanism of this complex remains unknown. Here, we present crystal structures of BBRF2 alone and in complex with BSRF1. BBRF2 has a compact globular architecture featuring a central β-sheet that is surrounded by 10 helices, it represents a novel fold distinct from other known protein structures. The central portion of BSRF1 folds into two tightly associated antiparallel α-helices, forming a composite four-helix bundle with two α-helices from BBRF2 via a massive hydrophobic network. In vitro, a BSRF1-derived peptide binds to BBRF2 and reduces the number of viral genome copies in EBV-positive cells. Exogenous BBRF2 and BSRF1 co-localize at the Golgi apparatus. Furthermore, BBRF2 binds capsid and capsid-associated proteins, whereas BSRF1 associates with glycoproteins. These findings indicate that the BBRF2-BSRF1 complex tethers EBV nucleocapsids to the glycoprotein-enriched Golgi membrane, facilitating secondary envelopment.


2012 ◽  
Vol 287 (42) ◽  
pp. 35470-35483 ◽  
Author(s):  
Tau Benned-Jensen ◽  
Christoffer Norn ◽  
Stephane Laurent ◽  
Christian M. Madsen ◽  
Hjalte M. Larsen ◽  
...  

Oxysterols are oxygenated cholesterol derivates that are emerging as a physiologically important group of molecules. Although they regulate a range of cellular processes, only few oxysterol-binding effector proteins have been identified, and the knowledge of their binding mode is limited. Recently, the family of G protein-coupled seven transmembrane-spanning receptors (7TM receptors) was added to this group. Specifically, the Epstein-Barr virus-induced gene 2 (EBI2 or GPR183) was shown to be activated by several oxysterols, most potently by 7α,25-dihydroxycholesterol (7α,25-OHC). Nothing is known about the binding mode, however. Using mutational analysis, we identify here four key residues for 7α,25-OHC binding: Arg-87 in TM-II (position II:20/2.60), Tyr-112 and Tyr-116 (positions III:09/3.33 and III:13/3.37) in TM-III, and Tyr-260 in TM-VI (position VI:16/6.51). Substituting these residues with Ala and/or Phe results in a severe decrease in agonist binding and receptor activation. Docking simulations suggest that Tyr-116 interacts with the 3β-OH group in the agonist, Tyr-260 with the 7α-OH group, and Arg-87, either directly or indirectly, with the 25-OH group, although nearby residues likely also contribute. In addition, Tyr-112 is involved in 7α,25-OHC binding but via hydrophobic interactions. Finally, we show that II:20/2.60 constitutes an important residue for ligand binding in receptors carrying a positively charged residue at this position. This group is dominated by lipid- and nucleotide-activated receptors, here exemplified by the CysLTs, P2Y12, and P2Y14. In conclusion, we present the first molecular characterization of oxysterol binding to a 7TM receptor and identify position II:20/2.60 as a generally important residue for ligand binding in certain 7TM receptors.


2008 ◽  
Vol 82 (9) ◽  
pp. 4647-4655 ◽  
Author(s):  
Andreas Wiedmer ◽  
Pu Wang ◽  
Jing Zhou ◽  
Andrew J. Rennekamp ◽  
Valeria Tiranti ◽  
...  

ABSTRACT Disruption of cellular metabolic processes and usurpation of host proteins are hallmarks of herpesvirus lytic infection. Epstein-Barr virus (EBV) lytic replication is initiated by the immediate-early protein Zta. Zta is a multifunctional DNA binding protein that stimulates viral gene transcription, nucleates a replication complex at the viral origin of lytic replication, and inhibits cell cycle proliferation. To better understand these functions and identify cellular collaborators of Zta, we purified an epitope-tagged version of Zta in cells capable of supporting lytic replication. FLAG-tagged Zta was purified from a nuclear fraction using FLAG antibody immunopurification and peptide elution. Zta-associated proteins were isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and identified by mass spectrometry. The Zta-associated proteins included members of the HSP70 family and various single-stranded DNA and RNA binding proteins. The nuclear replication protein A subunits (RPA70 and RPA32) and the human mitochondrial single-stranded DNA binding protein (mtSSB) were confirmed by Western blotting to be specifically enriched in the FLAG-Zta immunopurified complex. mtSSB coimmunoprecipitated with endogenous Zta during reactivation of EBV-positive Burkitt lymphoma and lymphoblastoid cell lines. Small interfering RNA depletion of mtSSB reduced Zta-induced lytic replication of EBV but had only a modest effect on transcription activation function. A point mutation in the Zta DNA binding domain (C189S), which is known to reduce lytic cycle replication, eliminated mtSSB association with Zta. The predominantly mitochondrial localization of mtSSB was shifted to partly nuclear localization in cells expressing Zta. Mitochondrial DNA synthesis and genome copy number were reduced by Zta-induced EBV lytic replication. We conclude that Zta interaction with mtSSB serves the dual function of facilitating viral and blocking mitochondrial DNA replication.


Sign in / Sign up

Export Citation Format

Share Document