scholarly journals A Comprehensive Analysis of Hungarian MODY Patients—Part II: Glucokinase MODY Is the Most Prevalent Subtype Responsible for about 70% of Confirmed Cases

Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 771
Author(s):  
Zsolt Gaál ◽  
Zsuzsanna Szűcs ◽  
Irén Kántor ◽  
Andrea Luczay ◽  
Péter Tóth-Heyn ◽  
...  

MODY2 is caused by heterozygous inactivating mutations in the glucokinase (GCK) gene that result in persistent, stable and mild fasting hyperglycaemia (5.6–8.0 mmol/L, glycosylated haemoglobin range of 5.6–7.3%). Patients with GCK mutations usually do not require any drug treatment, except during pregnancy. The GCK gene is considered to be responsible for about 20% of all MODY cases, transcription factors for 67% and other genes for 13% of the cases. Based on our findings, GCK and HNF1A mutations together are responsible for about 90% of the cases in Hungary, this ratio being higher than the 70% reported in the literature. More than 70% of these patients have a mutation in the GCK gene, this means that GCK-MODY is the most prevalent form of MODY in Hungary. In the 91 index patients and their 72 family members examined, we have identified a total of 65 different pathogenic (18) and likely pathogenic (47) GCK mutations of which 28 were novel. In two families, de novo GCK mutations were detected. About 30% of the GCK-MODY patients examined were receiving unnecessary OAD or insulin therapy at the time of requesting their genetic testing, therefore the importance of having a molecular genetic diagnosis can lead to a major improvement in their quality of life.

2017 ◽  
Vol 21 (3) ◽  
pp. 319-323 ◽  
Author(s):  
Zöe Powis ◽  
Adam C Chamberlin ◽  
Christina L Alamillo ◽  
Sophia Ceulemans ◽  
Lynne M Bird ◽  
...  

Objective Herein, we report a case of a deceased newborn with prenatally detected hydrocephalus. Postnatal findings included abnormal brain imaging and electroencephalogram, optic nerve abnormalities, and elevated creatine kinase (CK). No underlying genetic etiology had been previously identified for the proband, despite testing with a congenital muscular dystrophy gene panel. Methods Diagnostic exome sequencing (DES) was performed on the proband-parents trio, and candidate alterations were confirmed using automated fluorescence dideoxy sequencing. Results Exome sequencing of the proband, mother and father identified a previously unreported apparently de novo heterozygous tubulin, beta-3 ( TUBB3) c.523G>C (p.V175L) alteration in the proband. Conclusion Overall, DES established a likely molecular genetic diagnosis for a postmortem case after traditional testing methods were uninformative. The DES results allowed for reproductive options, such as preimplantation genetic diagnosis and/or prenatal diagnosis, to be available to the parents in future pregnancies.


2020 ◽  
Vol 33 (6) ◽  
pp. 691-701 ◽  
Author(s):  
Tatsushi Tanaka ◽  
Kohei Aoyama ◽  
Atsushi Suzuki ◽  
Shinji Saitoh ◽  
Haruo Mizuno

AbstractObjectivesCongenital hypothyroidism (CH) is the most common congenital endocrine disorder. Recent advances in genetic testing have revealed its causative mutations in some CH patients. However, the underlying etiology remains unknown in most patients. This study aimed to perform clinical and genetic investigation in Japanese CH patients to uncover genotype-phenotype correlations.MethodsWe enrolled 136 Japanese patients with transient or permanent CH between April 2015 and March 2017, and performed next-generation sequencing of 19 genes implicated in CH.ResultsWe identified potentially pathogenic bi-allelic variants in DUOX2, TSHR, and TPO in 19, 5, and 1 patient, respectively (autosomal recessive), and a potentially pathogenic mono-allelic variant in NKX2-1 (autosomal dominant) in 1 patient. Molecular genetic diagnosis was highly suggested in 26 patients (19%) from 23 families. We also detected a potentially pathogenic mono-allelic variant in five recessive genes (DUOX2, TSHR, TG, DUOXA2, and TPO) in 31 unrelated patients (23%), although the pathogenicity of these variants remains inconclusive. Patients with bi-allelic DUOX2 variants showed a more severe clinical presentation in infancy than those with bi-allelic TSHR variants. However, this trend reversed beyond infancy. There were no statistical differences in initial thyroid stimulating hormone, free thyroxine, thyroglobulin, and levothyroxine dose as of March 2017 between patients with bi-allelic and mono-allelic DUOX2 variants.ConclusionsThe prevalence of potentially-pathogenic variants in Japanese CH patients was similar to that found by previous reports. Our study demonstrates a genotype-phenotype correlation in Japanese CH patients.


The Lancet ◽  
1991 ◽  
Vol 337 (8753) ◽  
pp. 1311-1313 ◽  
Author(s):  
S.R. Hammans ◽  
M.G. Sweeney ◽  
M. Brockington ◽  
J.A. Morgan-Hughes ◽  
A.E. Harding

2021 ◽  
Vol 67 (1) ◽  
pp. 13-19
Author(s):  
Turna Ashkhatcava ◽  
Marina Tatarinova ◽  
Lali Kogoniya ◽  
David Naskhletashvili ◽  
Vadim Zhukov

The article is devoted to the issue of molecular genetic diagnosis of cerebral glioblastomas. Despite significant advances in neurooncology, little progress has been made in prolonging the life of patients with cerebral glioblastoma, and a significant part of the effectiveness of treatment depends on the recognition of two prognostic biomarkers: mutations of the isocitrate dehydrogenase (IDH) promoter and  the methylation of the O6-methylguanine methyl transferase (MGMT) promoter. The article summarizes the data of world and domestic clinical studies, allowing to supplement the histological characteristics of primary glioblastomas with genetic markers: the presence of the TERT mutation, EFGR amplification, loss of PTEN function, LOH 10q, and the presence of the BRAF mutation. It should be noted that the amplification of EGFR, causing resistance to apoptotic stimuli and alkylating chemotherapy with Temozolomide, attracts much attention as a therapeutic target. The frequency of occurrence of the TERT mutation is 90% of all tumors of various genesis, most often the TERT mutation is found in oligodendroglioma or primary glioblastoma. Loss of heterozygosity in the region of localization of the PTEN gene is observed in many types of sporadic tumors, including more than 40% of glioblastomas. Mutations in this gene are found in tumors of the brain, endometrium, prostate, kidney, and mammary gland. The presence of a PTEN mutation is a poor prognostic factor. LOH 22q is much more common in secondary glioblastomas (82%) than in primary glioblastomas (41%). Among brain tumors, the BRAF mutation is most common with pleomorphic xanastrocytoma (60-70%).The BRAF V600E mutation was found in epithelioid glioblastoma, which is a rare and aggressive type of glioblastoma, characterized by an unfavorable prognosis (about 6 months) and frequent leptomeningeal spread. Thus, knowledge of the molecular mechanisms of carcinogenesis will enable a personalized approach to treatment with glioblastomas of the brain.


1996 ◽  
Vol 87 (5) ◽  
pp. 423-428 ◽  
Author(s):  
Hiroshi Kanno ◽  
Taro Shuin ◽  
Keiichi Kondo ◽  
Susumu Ito ◽  
Masahiko Hosaka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document