scholarly journals Continuous Feeding Reduces the Generation of Metabolic Byproducts and Increases Antibodies Expression in Chinese Hamster Ovary-K1 Cells

Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 945
Author(s):  
Shang Xiao ◽  
Waqas Ahmed ◽  
Ali Mohsin ◽  
Meijin Guo

Chinese hamster ovary (CHO) cells are the most important host system used for monoclonal antibody (mAb) expression. Moreover, the fed-batch culture mode is the most widely used method to increase mAb expression in CHO cells by increasing the amount of feed. However, a high amount of culture feed results in the production of metabolic byproducts. In this work, we used a continuous feeding strategy to reduce metabolic byproducts and improve mouse–human chimeric anti-epidermal growth factor receptor vIII (EGFRvIII) antibody C12 expression in Chinese hamster ovary-K1 cells. Moreover, the effects of the feeding strategy on the cell culture and monoclonal antibody production were evaluated in chemically defined suspension cultures of recombinant CHO-K1 cells. Compared with bolus feeding methods, the continuous feeding method did not have any advantages when the feeding amount was low, but with a high feeding amount, the continuous feeding method significantly reduced the concentrations of lactate and NH4+ in the later culture stage. At the end of the culture stage, compared with bolus feeding methods, the lactate and NH4+ concentrations under the continuous feeding mode were reduced by approximately 45% and 80%, respectively. In addition, the antibody C12 expression level was also increased by almost 10%. Compared to the bolus feeding method, the antibody C12 produced by the continuous feeding method had a lower content of high-mannose glycoforms. Further analysis found that the osmolality of the continuous feeding method was lower than that of the typical fed-batch bolus feeding method. Conclusively, these results indicate that the continuous feeding method is very useful for reducing metabolic byproducts and achieving higher levels of mAb production.

Metabolites ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 199 ◽  
Author(s):  
Nicholas Alden ◽  
Ravali Raju ◽  
Kyle McElearney ◽  
James Lambropoulos ◽  
Rashmi Kshirsagar ◽  
...  

Chinese hamster ovary (CHO) cells are widely used for the production of biopharmaceuticals. Efforts to improve productivity through medium design and feeding strategy optimization have focused on preventing the depletion of essential nutrients and managing the accumulation of lactate and ammonia. In addition to ammonia and lactate, many other metabolites accumulate in CHO cell cultures, although their effects remain largely unknown. Elucidating these effects has the potential to further improve the productivity of CHO cell-based bioprocesses. This study used untargeted metabolomics to identify metabolites that accumulate in fed-batch cultures of monoclonal antibody (mAb) producing CHO cells. The metabolomics experiments profiled six cell lines that are derived from two different hosts, produce different mAbs, and exhibit different growth profiles. Comparing the cell lines’ metabolite profiles at different growth stages, we found a strong negative correlation between peak viable cell density (VCD) and a tryptophan metabolite, putatively identified as 5-hydroxyindoleacetaldehyde (5-HIAAld). Amino acid supplementation experiments showed strong growth inhibition of all cell lines by excess tryptophan, which correlated with the accumulation of 5-HIAAld in the culture medium. Prospectively, the approach presented in this study could be used to identify cell line- and host-independent metabolite markers for clone selection and bioprocess development.


1999 ◽  
Vol 73 (10) ◽  
pp. 8019-8026 ◽  
Author(s):  
Ralf Nixdorf ◽  
Jerg Schmidt ◽  
Axel Karger ◽  
Thomas C. Mettenleiter

ABSTRACT Chinese hamster ovary (CHO) cells have recently been used for identification of receptors for several alphaherpesviruses, including pseudorabies virus (PrV) (R. J. Geraghty, C. Krummenacher, G. H. Cohen, R. J. Eisenberg, and P. G. Spear, Science 280:1618–1620, 1998). The experiments were based on the fact that CHO cells are inefficient target cells for PrV. However, a detailed analysis of the interaction between PrV and CHO wild-type and recombinant PrV-receptor bearing cells has not been performed. We show here that PrV has a growth defect on CHO cells which leads to a ca. 100-fold reduction in plating efficiency, strongly delayed penetration kinetics, and a 104-fold reduction in one-step growth. Entry of PrV into CHO cells is significantly delayed but is not affected by inhibitors of endocytosis, suggesting that the mechanism of penetration resembles that on permissive cells. The defects in plating efficiency and penetration could be corrected by expression of herpesvirus entry mediators B (HveB), HveC, or HveD, with HveC being the most effective. However, the defects in one-step growth and plaque formation were not corrected by expression of PrV receptors, indicating an additional restriction in viral replication after entry. Surprisingly, PrV infection of CHO cells was sensitive to neutralization by a gB-specific monoclonal antibody, which does not inhibit PrV infection of other host cells. Moreover, the same monoclonal antibody neutralized PrV infectivity on cells displaying the interference phenomenon by overexpression of gD and subsequent intracellular sequestration of gD receptors. Thus, absence of gD receptors on two different host cells leads to an increased sensitivity of PrV toward gB neutralization. We hypothesize that this is due to the increased requirement for interaction of gB with a cellular surface protein in the absence of the gD-gD receptor interaction. As expected, CHO cells are as susceptible as other host cells to infection by PrV gD− Pass, an infectious gD-negative PrV mutant. However, PrV gD− Pass was also not able to form plaques on CHO cells.


Author(s):  
Shazid Md. Sharker ◽  
Md. Atiqur Rahman

Most of clinical approved protein-based drugs or under in clinical trial have a profound impact in the treatment of critical diseases. The mammalian eukaryotic cells culture approaches, particularly the CHO (Chinese Hamster Ovary) cells are mainly used in the biopharmaceutical industry for the mass-production of therapeutic protein. Recent advances in CHO cell bioprocessing to yield recombinant proteins and monoclonal antibodies have enabled the expression of quality protein. The developments of cell lines are possible to upgrade specific productivity. As a result, it holds an interesting area for academic as well as industrial researchers around the world. This review will concentrate on the recent progress of the mammalian CHO cells culture technology and the future scope of further development for the mass-production of protein therapeutics.


2021 ◽  
pp. 2100098
Author(s):  
Benjamin F. Synoground ◽  
Claire E. McGraw ◽  
Kathryn S. Elliott ◽  
Christina Leuze ◽  
Jada R. Roth ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document