scholarly journals When Is a Reaction Network a Metabolism? Criteria for Simple Metabolisms That Support Growth and Division of Protocells

Life ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 966
Author(s):  
Paul G. Higgs

With the aim of better understanding the nature of metabolism in the first cells and the relationship between the origin of life and the origin of metabolism, we propose three criteria that a chemical reaction system must satisfy in order to constitute a metabolism that would be capable of sustaining growth and division of a protocell. (1) Biomolecules produced by the reaction system must be maintained at high concentration inside the cell while they remain at low or zero concentration outside. (2) The total solute concentration inside the cell must be higher than outside, so there is a positive osmotic pressure that drives cell growth. (3) The metabolic rate (i.e., the rate of mass throughput) must be higher inside the cell than outside. We give examples of small-molecule reaction systems that satisfy these criteria, and others which do not, firstly considering fixed-volume compartments, and secondly, lipid vesicles that can grow and divide. If the criteria are satisfied, and if a supply of lipid is available outside the cell, then continued growth of membrane surface area occurs alongside the increase in volume of the cell. If the metabolism synthesizes more lipid inside the cell, then the membrane surface area can increase proportionately faster than the cell volume, in which case cell division is possible. The three criteria can be satisfied if the reaction system is bistable, because different concentrations can exist inside and out while the rate constants of all the reactions are the same. If the reaction system is monostable, the criteria can only be satisfied if there is a reason why the rate constants are different inside and out (for example, the decay rates of biomolecules are faster outside, or the formation rates of biomolecules are slower outside). If this difference between inside and outside does not exist, a monostable reaction system cannot sustain cell growth and division. We show that a reaction system for template-directed RNA polymerization can satisfy the requirements for a metabolism, even if the small-molecule reactions that make the single nucleotides do not.

1992 ◽  
Vol 101 (4) ◽  
pp. 907-913 ◽  
Author(s):  
G.J. Cannon ◽  
J.A. Swanson

Murine bone marrow-derived macrophages, which measure 13.8 +/− 2.3 microns diameter in suspension, can ingest IgG-opsonized latex beads greater than 20 microns diameter. A precise assay has allowed the determination of the phagocytic capacity, and of physiological parameters that limit that capacity. Ingestion of beads larger than 15 microns diameter required IgG-opsonization, and took 30 minutes to reach completion. Despite the dependence on Fc-receptors for phagocytosis of larger beads, cells reached their limit before all cell surface Fc-receptors were occupied. The maximal membrane surface area after frustrated phagocytosis of opsonized coverslips was similar to the membrane surface area required to engulf particles at the limiting diameter, indicating that the capacity was independent of particle shape. Vacuolation of the lysosomal compartment with sucrose, which expanded endocytic compartments, lowered the phagocytic capacity. This decrease was reversed when sucrose vacuoles were collapsed by incubation of cells with invertase. These experiments indicate that the phagocytic capacity is limited by the amount of available membrane, rather than by the availability of Fc-receptors. The capacity was also reduced by depolymerization of cytoplasmic microtubules with nocodazole. Nocodazole did not affect the area of maximal cell spreading during frustrated phagocytosis, but did alter the shape of the spread cells. Thus, microtubules may coordinate cytoplasm for engulfment of the largest particles.


2012 ◽  
Vol 7 (2) ◽  
pp. 9-11 ◽  
Author(s):  
NS Chowdhury ◽  
FMM Islam ◽  
F Zafreen ◽  
BA Begum ◽  
N Sultana ◽  
...  

Introduction: Patients with end stage renal disease require 12 hours of haemodialysis per week in three equal sessions (4 hours/day for 3 days/week). But the duration and frequency of treatment can be reduced by increasing the surface area of the dialyzer membrane. Methods: In this prospective study 40 patients of end stage renal disease receiving haemodialysis for more than six months were included to observe the effects of increment in the surface area of the dialyzer membrane on the adequacy of haemodialysis. Result: It was observed that 20 patients receiving haemodialysis on a dialyzer with membrane surface area of 1.2 m² did not have satisfactory solute clearance index. Urea reduction ratio was 45.9 ± 3.03 and fractional urea clearance (Kt/V) was 0.76 ± 0.09. On the other hand patients (20 cases) receiving haemodialysis on a dialyzer with membrane surface area of 1.3 m² had a urea reduction ratio 50.76± 5.16 and fractional urea clearance (Kt/V) 0.91 ± 0.16. All the patients of both groups received dialysis for 8 hours/week in two equal sessions (4 hours/day for 2 days/week). Statistically the increment was significant (p<0.001). Conclusion: This study reveals, adequacy of dialysis can be increased by increasing the surface area of the dialyzer membrane. So, considering the poor socioeconomic condition of Bangladesh and patients' convenience, a short duration, low cost dialysis regime can be tried by increasing the surface area of dialyzer membrane. DOI: http://dx.doi.org/10.3329/jafmc.v7i2.10387 JAFMC 2011; 7(2): 9-11


1983 ◽  
Vol 217 (1207) ◽  
pp. 191-213 ◽  

Purkinje strands from both ventricles of adult mongrel dogs were excised, and electrical properties were studied by the voltage-clamp technique. The strands were then examined with light and electron microscopy and structural properties were analysed by morphometric techniques. The canine Purkinje strand contains (by volume) about 28% myocyte and 55% dense outer connective tissue. The remainder of the volume is taken up by the inner shell of loosely packed connective tissue within 10 μm of a myocyte membrane. These volume fractions vary considerably from one strand to another. Clefts less than 10 μm wide occupy 18% of the myocyte volume and clefts less than 1 μm wide occupy 1%. The membrane surface area of the myocytes can be divided into three categories by reference to the size of the adjacent cleft. About 47.8% of the membrane surface area faces clefts wider than 1 μm, another 22.2% faces clefts between 0.1 and 1 μm wide, and the final 30% faces clefts less than 0.1 μm wide. The surface area facing the narrowest clefts (less than 0.1 μm wide) is divided between nexuses 3%, desmosomes 10%, and unspecialized membrane 17% (each figure is expressed as a percentage of the total surface area of myocyte membrane). The canine Purkinje strand has a more favourable anatomy than the sheep Purkinje strand for most physiological experiments. We expect that the complicating effects of series resistance and change in the concentration of extracellular ions will be much smaller than in sheep strands, but still not negligible.


1994 ◽  
Vol 72 (2) ◽  
pp. 861-871 ◽  
Author(s):  
D. Ulrich ◽  
R. Quadroni ◽  
H. R. Luscher

1. Voltage-clamp, current-clamp, and morphological data were obtained from visually identified motoneurons in organotypic cocultures of rat embryonic spinal cord, dorsal root ganglia, and skeletal muscle. The cells were injected with Biocytin during whole-cell patch-clamp recordings and stained with horseradish peroxidase. 2. The somata and dendritic trees of the cells were reconstructed with a semiautomatic reconstruction system. The motoneurons had a common multipolar shape. An elliptic soma gave rise to 3-9 stem dendrites with a mean diameter of 2.5 +/- 0.9 (SD) micron terminating in 24 +/- 7 dendritic endings. The mean total dendritic path length was 3,306 +/- 1,075 microns. The mean total membrane surface area was 15,594 +/- 10,404 microns 2 with a dendritic to somatic membrane surface area ratio of 3.4 +/- 1.4 (n = 7 cells). 3. The ratio between the sum of the diameters of the two daughter branches and the diameter of the parental branch each raised to the 3/2 power at all branch points was 1.3 +/- 0.28 (n = 8 cells). The dendritic trees of the cells tapered continuously from the soma to the distal ends. The mean normalized dendritic trunk parameter of all cells was 0.62 +/- 0.22. 4. The motoneurons had a mean input resistance RN of 498 +/- 374 M delta, a mean membrane time constant (tau m) of 22 +/- 4.6 ms, and a mean dendritic dominance (rho) of 2.7 +/- 0.86 (n = 5 cells). The mean electronic length (L) calculated from tau m and the slowest voltage-clamp time constant (tau VC1) was 0.7 +/- 0.04 (n = 7 cells). 5. The specific membrane capacitance (Cm) estimated from the charge of the capacitive current during a voltage step and the total membrane surface area was 1.08 +/- 0.3 microF/cm2 (n = 6 cells). 6. Compartmental computer models were constructed of individual cells. Experimental and simulated voltage transients were matched with Cm = 1 microF/cm2, a uniform membrane resistivity (Rm) = tau m/Cm and a cytosolic resistivity (Ri) of 308 +/- 39 omega.cm (n = 3 cells). 7. The mean electrotonic length of the dendritic paths was 0.83 +/- 0.2 (n = 5 cells). The mean input resistance at the dendritic terminals (RT) was 1,413 +/- 260 M omega. Synaptic conductances were applied at all distal dendritic compartments of the model cells. The resulting synaptic currents were calculated at the input site and at the soma. The mean transient current attenuation ratio was 4.7 +/- 1.7 under idealized voltage-clamp conditions.(ABSTRACT TRUNCATED AT 400 WORDS)


1978 ◽  
Vol 77 (3) ◽  
pp. 685-697 ◽  
Author(s):  
BD Minsky ◽  
FJ Chlapowski

The flow of membrane between the cytoplasm and the lumenal surface during the expansion-contraction cycle of urinary bladder was estimated by stereological examination of electron micrographs of urothelial cells from guinea pigs, gerbils, hamsters, rabbits, and rats. The quantitative data obtained allowed an approximation of the surface area, volume, and numbers of lumenal membranelike vesicles and infoldings per unit volume of cytoplasm. Depending upon the species, approximately 85 to approximately 94% of the membrane surface area translocated into and out of the cytoplasm was in the form of discoidal vesicles. The remainder was accounted for by infoldings of the lumenal plasma membrane. The density of vesicles involved in transfer of membrane was quite similar in all the species examined, except guinea pigs which yielded lower values. In contrast, the densities of the total cytoplasmic pools of discoidal vesicles potentially available for translocation varied greatly among the different species. In general, species of animals with a highly concentrated urine had a greater density of discoidal vesicles than species with a less concentrated urine. This correlation may indicate an authentic relationship between lumenal membranes and the tonicity of urine, such as increased membrane recycling or turnover with increasingly hypertonic urine; or it may signify the existence of some other, more obscure relationship.


Blood ◽  
1983 ◽  
Vol 61 (5) ◽  
pp. 899-910 ◽  
Author(s):  
MR Clark ◽  
N Mohandas ◽  
SB Shohet

Whole cell deformability of red cells was measured as a continuous function of suspending medium osmolality using the ektacytometer, a laser-diffraction viscometer. Study of normal cells in which water content and membrane surface area had been selectively modified showed that this technique can detect changes in these properties with high sensitivity. The osmotic deformability profiles obtained from this assay provide information about cell water content, surface area, and the heterogeneity in these cellular properties, information that by conventional methods would require several different types of measurements. Application of this approach to a variety of pathologic blood samples showed that various hematologic disorders can be characterized by the shape of this profile and the position of specific features of the profile along the osmolality axis. Measurement of osmotic deformability profiles thus provides a convenient and comprehensive means of identifying abnormalities either in red cell water content or surface area.


Sign in / Sign up

Export Citation Format

Share Document