scholarly journals Measuring Proviral HIV-1 DNA: Hurdles and Improvements to an Assay Monitoring Integration Events Utilising Human Alu Repeat Sequences

Life ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1410
Author(s):  
Eva Malatinkova ◽  
Jordan Thomas ◽  
Ward De Spiegelaere ◽  
Sofie Rutsaert ◽  
Anna Maria Geretti ◽  
...  

Integrated HIV-1 DNA persists despite antiretroviral therapy and can fuel viral rebound following treatment interruption. Hence, methods to specifically measure the integrated HIV-1 DNA portion only are important to monitor the reservoir in eradication trials. Here, we provide an up-to-date overview of the literature on the different approaches used to measure integrated HIV-1 DNA. Further, we propose an implemented standard-curve free assay to quantify integrated HIV-1 DNA, so-called Alu-5LTR PCR, which utilises novel primer combinations. We tested the Alu-5LTR PCR in 20 individuals on suppressive ART for a median of nine years; the results were compared to those produced with the standard-free Alu-gag assay. The numbers of median integrated HIV-1 DNA copies were 5 (range: 1–12) and 14 (5–26) with the Alu-gag and Alu-5LTR, respectively. The ratios between Alu-gag vs Alu-5LTR results were distributed within the cohort as follows: most patients (12/20, 60%) provided ratios between 2–5, with 3/20 (15%) and 5/20 (25%) being below or above this range, respectively. Alu-5LTR assay sensitivity was also determined using an “integrated standard”; the data confirmed the increased sensitivity of the assay, i.e., equal to 0.25 proviruses in 10,000 genomes. This work represents an improvement in the field of measuring proviral HIV-1 DNA that could be employed in future HIV-1 persistence and eradication studies.

2016 ◽  
Vol 3 (2) ◽  
Author(s):  
Kathryn E. Stephenson ◽  
George H. Neubauer ◽  
Christine A. Bricault ◽  
Jennifer Shields ◽  
Madeleine Bayne ◽  
...  

Abstract The examination of antibody responses in human immunodeficiency virus (HIV)-1-infected individuals in the setting of antiretroviral treatment (ART) interruption can provide insight into the evolution of antibody responses during viral rebound. In this study, we assessed antibody responses in 20 subjects in AIDS Clinical Trials Group A5187, wherein subjects were treated with antiretroviral therapy during acute/early HIV-1 infection, underwent analytic treatment interruption, and subsequently demonstrated viral rebound. Our data suggest that early initiation of ART arrests the maturation of HIV-1-specific antibody responses, preventing epitope diversification of antibody binding and the development of functional neutralizing capacity. Antibody responses do not appear permanently blunted, however, because viral rebound triggered the resumption of antibody maturation in our study. We also found that antibody responses measured by these assays did not predict imminent viral rebound. These data have important implications for the HIV-1 vaccine and eradication fields.


2017 ◽  
Vol 91 (15) ◽  
Author(s):  
Wen Shi Lee ◽  
Anne B. Kristensen ◽  
Thomas A. Rasmussen ◽  
Martin Tolstrup ◽  
Lars Østergaard ◽  
...  

ABSTRACT There is growing interest in utilizing antibody-dependent cellular cytotoxicity (ADCC) to eliminate infected cells following reactivation from HIV-1 latency. A potential barrier is that HIV-1-specific ADCC antibodies decline in patients on long-term antiretroviral therapy (ART) and may not be sufficient to eliminate reactivated latently infected cells. It is not known whether reactivation from latency with latency-reversing agents (LRAs) could provide sufficient antigenic stimulus to boost HIV-1-specific ADCC. We found that treatment with the LRA panobinostat or a short analytical treatment interruption (ATI), 21 to 59 days, was not sufficient to stimulate an increase in ADCC-competent antibodies, despite viral rebound in all subjects who underwent the short ATI. In contrast, a longer ATI, 2 to 12 months, among subjects enrolled in the Strategies for Management of Antiretroviral Therapy (SMART) trial robustly boosted HIV-1 gp120-specific Fc receptor-binding antibodies and ADCC against HIV-1-infected cells in vitro. These results show that there is a lag between viral recrudescence and the boosting of ADCC antibodies, which has implications for strategies toward eliminating latently infected cells. IMPORTANCE The “shock and kill” HIV-1 cure strategy aims to reactivate HIV-1 expression in latently infected cells and subsequently eliminate the reactivated cells through immune-mediated killing. Several latency reversing agents (LRAs) have been examined in vivo, but LRAs alone have not been able to achieve HIV-1 remission and prevent viral rebound following analytical treatment interruption (ATI). In this study, we examined whether LRA treatment or ATI can provide sufficient antigenic stimulus to boost HIV-1-specific functional antibodies that can eliminate HIV-1-infected cells. Our study has implications for the antigenic stimulus required for antilatency strategies and/or therapeutic vaccines to boost functional antibodies and assist in eliminating the latent reservoir.


2020 ◽  
Author(s):  
Christiaan H. van Dorp ◽  
Jessica M. Conway ◽  
James B. Whitney ◽  
Dan H. Barouch ◽  
Alan S. Perelson

AbstractIn order to assess the efficacy of novel HIV-1 treatments leading to a functional cure, the time to viral rebound is frequently used as a surrogate endpoint. The longer the time to viral rebound, the more efficacious the therapy. In support of such an approach, mathematical models serve as a connection between the size of the latent reservoir and the time to HIV-1 rebound after treatment interruption. The simplest of such models assumes that a single successful latent cell reactivation event leads to observable viremia after a period of exponential viral growth. Here we consider a generalization developed by Pinkevych et al. and Hill et al. of this simple model in which multiple reactivation events can occur, each contributing to the exponential growth of the viral load. We formalize and improve the previous derivation of the dynamics predicted by this model, and use the model to estimate relevant biological parameters from SIV rebound data. We confirm a previously described effect of very early antiretroviral therapy (ART) initiation on the rate of recrudescence and the viral load growth rate after treatment interruption. We find that every day ART initiation is delayed results in a 39% increase in the recrudescence rate, and a 11% decrease of the viral growth rate. We show that when viral rebound occurs early relative to the viral load doubling time, a model with multiple successful reactivation events fits the data better than a model with only a single successful reactivation event.Author SummaryHIV-1 persists during suppressive antiretroviral therapy (ART) due to a reservoir of latently infected cells. When ART is stopped, HIV generally rebounds within a few weeks. However, there is a small fraction of patients that do not rebound over a period of months or years. A variety of treatments are being tested for their ability to reduce the size of the latent reservoir, to induce effective immune responses against the virus, or to prevent or prolong the time to viral rebound after ART interruption. These novel treatments are typically first tested in SIV infected macaques, and the efficacy of the treatment assessed by interrupting ART and measuring the time to viral rebound. Here, we develop and test a mathematical and statistical model that describes the process of viral rebound. The model can be used for statistical inference of the efficacy of newly developed treatments. Importantly, the model takes into account that multiple recrudescence events can precede rebound. We test the model using data from early treated SIV infected macaques.


AIDS ◽  
2008 ◽  
Vol 22 (13) ◽  
pp. 1583-1588 ◽  
Author(s):  
Radjin Steingrover ◽  
Katalyn Pogány ◽  
Evian Fernandez Garcia ◽  
Suzanne Jurriaans ◽  
Kees Brinkman ◽  
...  

2021 ◽  
Vol 95 (9) ◽  
Author(s):  
Y. Lévy ◽  
C. Lacabaratz ◽  
E. Lhomme ◽  
A. Wiedemann ◽  
C. Bauduin ◽  
...  

ABSTRACT In this placebo-controlled phase II randomized clinical trial, 103 human immunodeficiency virus type 1 (HIV-1)-infected patients under cART (combined antiretroviral treatment) were randomized 2:1 to receive either 3 doses of DNA GTU-MultiHIV B (coding for Rev, Nef, Tat, Gag, and gp160) at week 0 (W0), W4, and W12, followed by 2 doses of LIPO-5 vaccine containing long peptides from Gag, Pol, and Nef at W20 and W24, or placebo. Analytical treatment interruption (ATI) was performed between W36 to W48. At W28, vaccinees experienced an increase in functional CD4+ T-cell responses (P < 0.001 for each cytokine compared to W0) measured, predominantly against Gag and Pol/Env, and an increase in HIV-specific CD8+ T cells producing interleukin 2 (IL-2) and tumor necrosis factor alpha (TNF-α) (P = 0.001 and 0.013, respectively), predominantly against Pol/Env and Nef. However, analysis of T-cell subsets by mass cytometry in a subpopulation showed an increase in the W28/W0 ratio for memory CD8+ T cells coexpressing exhaustion and senescence markers such as PD-1/TIGIT (P = 0.004) and CD27/CD57 (P = 0.044) in vaccinees compared to the placebo group. During ATI, all patients experienced viral rebound, with the maximum observed HIV RNA level at W42 (median, 4.63 log10 copies [cp]/ml; interquartile range [IQR], 4.00 to 5.09), without any difference between arms. No patient resumed cART for CD4 cell count drop. Globally, the vaccine strategy was safe. However, a secondary HIV transmission during ATI was observed. These data show that the prime-boost combination of DNA and LIPO-5 vaccines elicited broad and polyfunctional T cells. The contrast between the quality of immune responses and the lack of potent viral control underscores the need for combined immunomodulatory strategies. (This study has been registered at ClinicalTrials.gov under registration no. NCT01492985.) IMPORTANCE In this placebo-controlled phase II randomized clinical trial, we evaluated the safety and immunogenicity of a therapeutic prime-boost vaccine strategy using a recombinant DNA vaccine (GTU-MultiHIV B clade) followed by a boost vaccination with a lipopeptide vaccine (HIV-LIPO-5) in HIV-infected patients on combined antiretroviral therapy. We show here that this prime-boost strategy is well tolerated, consistently with previous studies in HIV-1-infected individuals and healthy volunteers who received each vaccine component individually. Compared to the placebo group, vaccinees elicited strong and polyfunctional HIV-specific CD4+ and CD8+ T-cell responses. However, these immune responses presented some qualitative defects and were not able to control viremia following antiretroviral treatment interruption, as no difference in HIV viral rebound was observed in the vaccine and placebo groups. Several lessons were learned from these results, pointing out the urgent need to combine vaccine strategies with other immune-based interventions.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
James P Williams ◽  
Jacob Hurst ◽  
Wolfgang Stöhr ◽  
Nicola Robinson ◽  
Helen Brown ◽  
...  

In HIV-1 infection, a population of latently infected cells facilitates viral persistence despite antiretroviral therapy (ART). With the aim of identifying individuals in whom ART might induce a period of viraemic control on stopping therapy, we hypothesised that quantification of the pool of latently infected cells in primary HIV-1 infection (PHI) would predict clinical progression and viral replication following ART. We measured HIV-1 DNA in a highly characterised randomised population of individuals with PHI. We explored associations between HIV-1 DNA and immunological and virological markers of clinical progression, including viral rebound in those interrupting therapy. In multivariable analyses, HIV-1 DNA was more predictive of disease progression than plasma viral load and, at treatment interruption, predicted time to plasma virus rebound. HIV-1 DNA may help identify individuals who could safely interrupt ART in future HIV-1 eradication trials.Clinical trial registration: ISRCTN76742797 and EudraCT2004-000446-20


2019 ◽  
Vol 93 (15) ◽  
Author(s):  
Celina M. Abreu ◽  
Rebecca T. Veenhuis ◽  
Claudia R. Avalos ◽  
Shelby Graham ◽  
Suzanne E. Queen ◽  
...  

ABSTRACTUnderstanding the cellular and anatomical sites of latent virus that contribute to human immunodeficiency virus (HIV) rebound is essential for eradication. In HIV-positive patients, CD4+T lymphocytes comprise a well-defined functional latent reservoir, defined as cells containing transcriptionally silent genomes able to produce infectious virus once reactivated. However, the persistence of infectious latent virus in CD4+T cells in compartments other than blood and lymph nodes is unclear. Macrophages (Mϕ) are infected by HIV/simian immunodeficiency virus (SIV) and are likely to carry latent viral genomes during antiretroviral therapy (ART), contributing to the reservoir. Currently, the gold standard assay used to measure reservoirs containing replication-competent virus is the quantitative viral outgrowth assay (QVOA). Using an SIV-macaque model, the CD4+T cell and Mϕ functional latent reservoirs were measured in various tissues using cell-specific QVOAs. Our results showed that blood, spleen, and lung in the majority of suppressed animals contain latently infected Mϕs. Surprisingly, the numbers of CD4+T cells, monocytes, and Mϕs carrying infectious genomes in blood and spleen were at comparable frequencies (∼1 infected cell per million). We also demonstrate thatex vivoviruses produced in the Mϕ QVOA are capable of infecting activated CD4+T cells. These results strongly suggest that latently infected tissue Mϕs can reestablish productive infection upon treatment interruption. This study provides the first comparison of CD4+T cell and Mϕ functional reservoirs in a macaque model. It is the first confirmation of the persistence of latent genomes in monocytes in blood and Mϕs in the spleen and lung of SIV-infected ART-suppressed macaques. Our results demonstrate that transcriptionally silent genomes in Mϕs can contribute to viral rebound after ART interruption and should be considered in future HIV cure strategies.IMPORTANCEThis study suggests that CD4+T cells found throughout tissues in the body can contain replication-competent SIV and contribute to rebound of the virus after treatment interruption. In addition, this study demonstrates that macrophages in tissues are another cellular reservoir for SIV and may contribute to viral rebound after treatment interruption. This new insight into the size and location of the SIV reservoir could have great implications for HIV-infected individuals and should be taken into consideration for the development of future HIV cure strategies.


mBio ◽  
2019 ◽  
Vol 10 (4) ◽  
Author(s):  
Celina M. Abreu ◽  
Rebecca T. Veenhuis ◽  
Claudia R. Avalos ◽  
Shelby Graham ◽  
Daymond R. Parrilla ◽  
...  

ABSTRACT Human immunodeficiency virus (HIV) eradication or long-term suppression in the absence of antiretroviral therapy (ART) requires an understanding of all viral reservoirs that could contribute to viral rebound after ART interruption. CD4 T cells (CD4s) are recognized as the predominant reservoir in HIV type 1 (HIV-1)-infected individuals. However, macrophages are also infected by HIV-1 and simian immunodeficiency virus (SIV) during acute infection and may persist throughout ART, contributing to the size of the latent reservoir. We sought to determine whether tissue macrophages contribute to the SIVmac251 reservoir in suppressed macaques. Using cell-specific quantitative viral outgrowth assays (CD4-QVOA and MΦ-QVOA), we measured functional latent reservoirs in CD4s and macrophages in ART-suppressed SIVmac251-infected macaques. Spleen, lung, and brain in all suppressed animals contained latently infected macrophages, undetectable or low-level SIV RNA, and detectable SIV DNA. Silent viral genomes with potential for reactivation and viral spread were also identified in blood monocytes, although these cells might not be considered reservoirs due to their short life span. Additionally, virus produced in the MΦ-QVOA was capable of infecting healthy activated CD4s. Our results strongly suggest that functional latent reservoirs in CD4s and macrophages can contribute to viral rebound and reestablishment of productive infection after ART interruption. These findings should be considered in the design and implementation of future HIV cure strategies. IMPORTANCE This study provides further evidence that the latent reservoir is comprised of both CD4+ T cells and myeloid cells. The data presented here suggest that CD4+ T cells and macrophages found throughout tissues in the body can contain replication-competent SIV and contribute to rebound of the virus after treatment interruption. Additionally, we have shown that monocytes in blood contain latent virus and, though not considered a reservoir themselves due to their short life span, could contribute to the size of the latent reservoir upon entering the tissue and differentiating into long-lived macrophages. These new insights into the size and location of the SIV reservoir using a model that is heavily studied in the HIV field could have great implications for HIV-infected individuals and should be taken into consideration with the development of future HIV cure strategies.


Sign in / Sign up

Export Citation Format

Share Document