scholarly journals Machine Learning Techniques in Concrete Mix Design

Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1256 ◽  
Author(s):  
Patryk Ziolkowski ◽  
Maciej Niedostatkiewicz

Concrete mix design is a complex and multistage process in which we try to find the best composition of ingredients to create good performing concrete. In contemporary literature, as well as in state-of-the-art corporate practice, there are some methods of concrete mix design, from which the most popular are methods derived from The Three Equation Method. One of the most important features of concrete is compressive strength, which determines the concrete class. Predictable compressive strength of concrete is essential for concrete structure utilisation and is the main feature of its safety and durability. Recently, machine learning is gaining significant attention and future predictions for this technology are even more promising. Data mining on large sets of data attracts attention since machine learning algorithms have achieved a level in which they can recognise patterns which are difficult to recognise by human cognitive skills. In our paper, we would like to utilise state-of-the-art achievements in machine learning techniques for concrete mix design. In our research, we prepared an extensive database of concrete recipes with the according destructive laboratory tests, which we used to feed the selected optimal architecture of an artificial neural network. We have translated the architecture of the artificial neural network into a mathematical equation that can be used in practical applications.

2018 ◽  
Author(s):  
Behrouz Alizadeh Savareh ◽  
Azadeh Bashiri ◽  
Ali Behmanesh ◽  
Gholam Hossein Meftahi ◽  
Boshra Hatef

Introduction: Sleep scoring is an important step in the treatment of sleep disorders. Manual annotation of sleep stages is time-consuming and experience-relevant and, therefore, needs to be done using machine learning techniques. methods: Sleep-edf polysomnography was used in this study as a dataset. Support Vector Machines and Artificial Neural Network performance were compared in sleep scoring using wavelet tree features and neighborhood component analysis. Results: Neighboring component analysis as a combination of linear and non-linear feature selection method had a substantial role in feature dimension reduction. Artificial neural network and support vector machine achieved 90.30% and 89.93% accuracy respectively. Discussion and Conclusion: Similar to the state of the art performance, introduced method in the present study achieved an acceptable performance in sleep scoring. Furthermore, its performance can be enhanced using a technique combined with other techniques in feature generation and dimension reduction. It is hoped that, in the future, intelligent techniques can be used in the process of diagnosing and treating sleep disorders.


Author(s):  
James A. Tallman ◽  
Michal Osusky ◽  
Nick Magina ◽  
Evan Sewall

Abstract This paper provides an assessment of three different machine learning techniques for accurately reproducing a distributed temperature prediction of a high-pressure turbine airfoil. A three-dimensional Finite Element Analysis thermal model of a cooled turbine airfoil was solved repeatedly (200 instances) for various operating point settings of the corresponding gas turbine engine. The response surface created by the repeated solutions was fed into three machine learning algorithms and surrogate model representations of the FEA model’s response were generated. The machine learning algorithms investigated were a Gaussian Process, a Boosted Decision Tree, and an Artificial Neural Network. Additionally, a simple Linear Regression surrogate model was created for comparative purposes. The Artificial Neural Network model proved to be the most successful at reproducing the FEA model over the range of operating points. The mean and standard deviation differences between the FEA and the Neural Network models were 15% and 14% of a desired accuracy threshold, respectively. The Digital Thread for Design (DT4D) was used to expedite all model execution and machine learning training. A description of DT4D is also provided.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5247 ◽  
Author(s):  
Behrouz Alizadeh Savareh ◽  
Azadeh Bashiri ◽  
Ali Behmanesh ◽  
Gholam Hossein Meftahi ◽  
Boshra Hatef

IntroductionSleep scoring is an important step in the treatment of sleep disorders. Manual annotation of sleep stages is time-consuming and experience-relevant and, therefore, needs to be done using machine learning techniques.MethodsSleep-EDF polysomnography was used in this study as a dataset. Support vector machines and artificial neural network performance were compared in sleep scoring using wavelet tree features and neighborhood component analysis.ResultsNeighboring component analysis as a combination of linear and non-linear feature selection method had a substantial role in feature dimension reduction. Artificial neural network and support vector machine achieved 90.30% and 89.93% accuracy, respectively.Discussion and ConclusionSimilar to the state of the art performance, the introduced method in the present study achieved an acceptable performance in sleep scoring. Furthermore, its performance can be enhanced using a technique combined with other techniques in feature generation and dimension reduction. It is hoped that, in the future, intelligent techniques can be used in the process of diagnosing and treating sleep disorders.


2018 ◽  
Author(s):  
Behrouz Alizadeh Savareh ◽  
Azadeh Bashiri ◽  
Ali Behmanesh ◽  
Gholam Hossein Meftahi ◽  
Boshra Hatef

Introduction: Sleep scoring is an important step in the treatment of sleep disorders. Manual annotation of sleep stages is time-consuming and experience-relevant and, therefore, needs to be done using machine learning techniques. methods: Sleep-edf polysomnography was used in this study as a dataset. Support Vector Machines and Artificial Neural Network performance were compared in sleep scoring using wavelet tree features and neighborhood component analysis. Results: Neighboring component analysis as a combination of linear and non-linear feature selection method had a substantial role in feature dimension reduction. Artificial neural network and support vector machine achieved 90.30% and 89.93% accuracy respectively. Discussion and Conclusion: Similar to the state of the art performance, introduced method in the present study achieved an acceptable performance in sleep scoring. Furthermore, its performance can be enhanced using a technique combined with other techniques in feature generation and dimension reduction. It is hoped that, in the future, intelligent techniques can be used in the process of diagnosing and treating sleep disorders.


Author(s):  
Bhavesh Patel

Machine learning techniques are used by many organizations to analyze the data and finding some meaningful hidden pattern from the data, this process is useful by an organization to take the decision making process. Various organizations used like marketing, health care, software organization and education institute etc used it in decision making. We have used machine learning techniques to enhance the performance of students. It will be ultimately used by educational institute to improve the status of educational institute. This research paper includes Naïve Bayes (NB), Logistic Regression (LR), Artificial Neural Network(ANN) and Decision Tree machine learning techniques. Performance of these models have been compared using accuracy measures parameters and ROC index. This research paper has used various parameters like academic performance and demographic information to build the model. In addition to judge the performance also used some additional parameters to measure the performance like F-measure, precision, error rate and recall. The dataset is collected using survey methodology to build the model. As a conclusion found that the Artificial Neural Network model get the best performance among all the models.


2019 ◽  
Vol 2019 (3) ◽  
pp. 191-209 ◽  
Author(s):  
Se Eun Oh ◽  
Saikrishna Sunkam ◽  
Nicholas Hopper

Abstract Recent advances in Deep Neural Network (DNN) architectures have received a great deal of attention due to their ability to outperform state-of-the-art machine learning techniques across a wide range of application, as well as automating the feature engineering process. In this paper, we broadly study the applicability of deep learning to website fingerprinting. First, we show that unsupervised DNNs can generate lowdimensional informative features that improve the performance of state-of-the-art website fingerprinting attacks. Second, when used as classifiers, we show that they can exceed performance of existing attacks across a range of application scenarios, including fingerprinting Tor website traces, fingerprinting search engine queries over Tor, defeating fingerprinting defenses, and fingerprinting TLS-encrypted websites. Finally, we investigate which site-level features of a website influence its fingerprintability by DNNs.


Sign in / Sign up

Export Citation Format

Share Document