scholarly journals Copper Iodide Interlayer for Improved Charge Extraction and Stability of Inverted Perovskite Solar Cells

Materials ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1406 ◽  
Author(s):  
Danila Saranin ◽  
Pavel Gostischev ◽  
Dmitry Tatarinov ◽  
Inga Ermanova ◽  
Vsevolod Mazov ◽  
...  

Nickel oxide (NiO) is one of the most promising and high-performing Hole Transporting Layer (HTL) in inverted perovskite solar cells due to ideal band alignment with perovskite absorber, wide band gap, and high mobility of charges. At the same time, however, NiO does not provide good contact and trap-free junction for hole collection. In this paper, we examine this problem by developing a double hole transport configuration with a copper iodide (CuI) interlayer for efficient surface passivation. Transient photo-current (TPC) measurements showed that Perovskite/HTL interface with CuI interlayer has an improved hole injection; CuI passivation reduces the concentration of traps and the parasitic charge accumulation that limits the flow of charges. Moreover, we found that CuI protect the HTL/perovskite interface from degradation and consequently improve the stability of the cell. The presence of CuI interlayer induces an improvement of open-circuit voltage VOC (from 1.02 V to 1.07 V), an increase of the shunt resistance RSH (100%), a reduction of the series resistance RS (−30%), and finally a +10% improvement of the solar cell efficiency.

2019 ◽  
Vol 7 (5) ◽  
pp. 1173-1181 ◽  
Author(s):  
Jungyun Hong ◽  
Hyebin Kim ◽  
Inchan Hwang

Aging-induced light soaking and hysteretic behavior of methylammonium lead trihalide perovskite solar cells can be seen dependent on the morphology of copper iodide (CuI) utilized as a hole-transport layer.


NANO ◽  
2019 ◽  
Vol 14 (10) ◽  
pp. 1950127 ◽  
Author(s):  
Farhad Jahantigh ◽  
S. M. Bagher Ghorashi

Perovskite solar cells have recently been considered to be an auspicious candidate for the advancement of future photovoltaic research. A power conversion efficiency (PCE) as high as 22% has been reported to be reached, which can be obtained through an inexpensive and high-throughput solution process. Modeling and simulation of these cells can provide deep insights into their fundamental mechanism of performance. In this paper, two different perovskite solar cells are designed by using COMSOL Multiphysics to optimize the thickness of each layer and the overall thickness of the cell. Electric potential, electron and hole concentrations, generation rate, open-circuit voltage, short-circuit current and the output power were calculated. Finally, PCEs of 20.7% and 26.1% were predicted. Afterwards, according to the simulation results, the role of the hole transport layer (HTL) was investigated and the optimum thickness of the perovskite was measured to be 200[Formula: see text]nm for both cells. Therefore, the spin coating settings are selected so that a coating with this thickness for cell 1 is deposited. In order to compare the performance of HTM layer, solar cells with a Spiro-OMeTAD HTM and without the HTM layer in their structure were fabricated. According to the obtained photovoltaic properties, the solar cell made with Spiro-OMeTAD has a more favorable open-circuit voltage ([Formula: see text]), short-circuit current density ([Formula: see text]), fill factor (FF) and PCE compared to the cell without the HTM layer. Also, hysteresis depends strongly on the perovskite grain size, because large average grain size will lead to an increase in the grain’s contact surface area and a decrease in the density of grain boundaries. Finally, according to the results, it was concluded that, in the presence of a hole transport layer, ion transfer was better and ion accumulation was less intense, and therefore, the hysteresis decreases.


2018 ◽  
Vol 67 ◽  
pp. 01021 ◽  
Author(s):  
Istighfari Dzikri ◽  
Michael Hariadi ◽  
Retno Wigajatri Purnamaningsih ◽  
Nji Raden Poespawati

Research in solar cells is needed to maximize Indonesia’s vast solar potential that can reach up to 207.898 MW with an average radiation of 4.8 kWh/m2/day. Organometallic perovskite solar cells (PSCs) have gained immense attention due to their rapid increase in efficiency and compatibility with low-cost fabrication methods. Understanding the role of hole transport layer is very important to obtain highly efficient PSCs. In this work, we studied the effect of Hole Transport Layer (HTL) to the performance of perovskite solar cell. The devices with HTL exhibit substantial increase in power conversion efficiency, open circuit voltage and short circuit current compared to the device without HTL. The best performing device is PSC with CuSCN as HTL layer, namely Voc of 0.24, Isc of 1.79 mA, 0.27 FF and efficiency of 0.09%.


Polymers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1227 ◽  
Author(s):  
Byung Kim ◽  
Woongsik Jang ◽  
Dong Wang

Nickel oxide (NiOx)–based perovskite solar cells (PSCs) have recently gained considerable interest, and exhibit above 20% photovoltaic efficiency. However, the reported syntheses of NiOx sol-gel used toxic chemicals for the catalysts during synthesis, which resulted in a high-temperature annealing requirement to remove the organic catalysts (ligands). Herein, we report a facile “NiOx sol-gel depending on the chain length of various solvents” method that eschews toxic catalysts, to confirm the effect of different types of organic solvents on NiOx synthesis. The optimized conditions of the method resulted in better morphology and an increase in the crystallinity of the perovskite layer. Furthermore, the use of the optimized organic solvent improved the absorbance of the photoactive layer in the PSC device. To compare the electrical properties, a PSC was prepared with a p-i-n structure, and the optimized divalent alcohol-based NiOx as the hole transport layer. This improved the charge transport compared with that for the typical 1,2-ethanediol (ethylene glycol) used in earlier studies. Finally, the optimized solvent-based NiOx enhanced device performance by increasing the short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF), compared with those of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)–based devices.


2016 ◽  
Vol 4 (38) ◽  
pp. 9003-9008 ◽  
Author(s):  
Peng Wang ◽  
Jing Zhang ◽  
Zhaobing Zeng ◽  
Renjie Chen ◽  
Xiaokun Huang ◽  
...  

Low-cost inorganic copper iodide (CuI) is introduced as a potential oxidizer for hole-transport material (HTM) in perovskite solar cells (PSCs).


2019 ◽  
Vol 62 (3) ◽  
pp. 363-369 ◽  
Author(s):  
Jing Cao ◽  
Binghui Wu ◽  
Jian Peng ◽  
Xiaoxia Feng ◽  
Congping Li ◽  
...  

Science ◽  
2020 ◽  
Vol 367 (6484) ◽  
pp. 1352-1358 ◽  
Author(s):  
Zhenyi Ni ◽  
Chunxiong Bao ◽  
Ye Liu ◽  
Qi Jiang ◽  
Wu-Qiang Wu ◽  
...  

We report the profiling of spatial and energetic distributions of trap states in metal halide perovskite single-crystalline and polycrystalline solar cells. The trap densities in single crystals varied by five orders of magnitude, with a lowest value of 2 × 1011 per cubic centimeter and most of the deep traps located at crystal surfaces. The charge trap densities of all depths of the interfaces of the polycrystalline films were one to two orders of magnitude greater than that of the film interior, and the trap density at the film interior was still two to three orders of magnitude greater than that in high-quality single crystals. Suprisingly, after surface passivation, most deep traps were detected near the interface of perovskites and hole transport layers, where a large density of nanocrystals were embedded, limiting the efficiency of solar cells.


2019 ◽  
Vol 7 (32) ◽  
pp. 18971-18979 ◽  
Author(s):  
Tian Du ◽  
Weidong Xu ◽  
Matyas Daboczi ◽  
Jinhyun Kim ◽  
Shengda Xu ◽  
...  

Reduction in p-doping of the organic hole transport layer (HTL) leads to substantial improvements in PV performance in planar p–i–n perovskite solar cells.


Sign in / Sign up

Export Citation Format

Share Document