scholarly journals A Simulation Study to Calculate a Structure Conceived by Eugène Viollet-le-Duc in 1850 with Finite Element Analysis

Materials ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 2576 ◽  
Author(s):  
Adela Rueda Márquez de la Plata ◽  
Pablo Alejandro Cruz Franco

This study aims to investigate the application of finite element calculations to mixed structures of complex materials. As an example, we chose a vault designed by Eugène Viollet-le-Duc in 1850, at which time it was not possible to verify the complexities of the different materials working together in a single structure using these calculation methods. To carry out the simulation, the internal qualities of each material and its current equivalent are taken into account. Thus, the composition of each element is crucial for its integration into the whole structure and its modeling and subsequent calculation. With this research, we show that a finite element analysis can also be applied to structures that are yet to be built. Furthermore, we verify the technological, construction and materials knowledge that has led us here and demonstrate that what was once a utopian vision can now be realized using the structures and materials we have access to today.

2013 ◽  
Vol 456 ◽  
pp. 55-59
Author(s):  
Ren Bin Zhou ◽  
Xue Bing Liao ◽  
An Qing Ming ◽  
Yong Feng Zhang

Studying the armor-piercing effect of armor-piercing bomb that attacks aluminum target is essential, because the target can be considered the simulation of the actual fight equipment. Based on the hypothesis about building the fraction field, the armor-piercing effect of armor-piercing bomb is analyzed, and the velocity and the intruding depth parameter model of armor-piercing effect are established. Taking a certain armor-piercing bomb as example, the intruding processes of armor-piercing effect are simulated by using the nonlinear finite element analysis program LS-DYNA, while aluminum target simulates the wall of combat equipment in two different conditions. At last, the finite element simulated results are given and analyzed that agree with the experiments.


SIMULATION ◽  
2020 ◽  
Vol 96 (9) ◽  
pp. 713-723
Author(s):  
Rui Zhang ◽  
Dianlei Han ◽  
Guolong Yu ◽  
Haitao Wang ◽  
Haibao Liu ◽  
...  

Inspired by the superior fixed and traction characteristics of ostrich foot toenails, we devised, optimized and manufactured the single structure and group arrangement of a new-style bionic spike for sprint shoes to improve athletic performance. The tractive performance of the bionic spike was tested by finite element analysis and experimental verification. The optimized single structure of the bionic spike had a top slope angle of 13° and the radius of the medial groove of 7.3 mm. Compared with the conventional conic spike, the maximal and stable extrusion resistances of the single bionic spike decreased by about 25% and 40% respectively, while the maximal and stable horizontal thrusts increased by about 16% and 10%, respectively. In addition, the arrangement of the bionic spikes was also optimized. Compared with the conventional spike group, the maximal and stable extrusion resistances of the bionic spike group decreased by 11.0% and 6.2%, respectively, while the maximal and stable horizontal thrusts increased by 20.0% and 16.0%, respectively. The current results may provide useful mechanical information that can help develop a better design of athletic shoes with the potential for advanced performance.


Holzforschung ◽  
2009 ◽  
Vol 63 (5) ◽  
Author(s):  
Hiroshi Yoshihara

Abstract In this research, Poisson's ratio of plywood as obtained by a tension test was examined by varying the width of the specimen. The tension tests were conducted on five-plywood of lauan (Shorea sp.) with various widths, and Young's moduli and Poisson's ratios of the specimens were measured. Finite element calculations were independently conducted. A comparison of the experimental results with those of finite element analysis revealed that Young's modulus could be obtained properly when the width of the plywood strip varied. In contrast, the width of the plywood strip should be large enough to determine Poisson's ratio properly.


2009 ◽  
Vol 37 (2) ◽  
pp. 87-97
Author(s):  
Nader G. Zamani ◽  
Nima Gharib ◽  
P. N. Kaloni

This paper describes the effect of beam offsetting in finite element calculations. The effect is evaluated by considering two case studies involving beams, in which finite element analysis is performed with solid elements and with shell elements. It is seen that, under certain conditions, ignoring the beam offset can lead to erroneous results. Although the beam offsetting feature is available in most commercial codes, it is not always well documented.


2006 ◽  
Vol 312 ◽  
pp. 173-178 ◽  
Author(s):  
Sharon Kao-Walter ◽  
Per Ståhle ◽  
Shao Hua Chen

The crack tip driving force of a crack growing from a pre-crack that is perpendicular to and terminating at an interface between two materials is investigated using a linear fracture mechanics theory. The analysis is performed both for a crack penetrating the interface, growing straight ahead, and for a crack deflecting into the interface. The results from finite element calculations are compared with asymptotic solutions for infinitesimally small crack extensions. The solution is found to be accurate even for fairly large amounts of crack growth. Further, by comparing the crack tip driving force of the deflected crack with that of the penetrating crack, it is shown how to control the path of the crack by choosing the adhesion of the interface relative to the material toughness.


Author(s):  
Yuichi Yoshida ◽  
Tomoyo Taniguchi ◽  
Teruhiro Nakashima ◽  
Ken Hatayama

Abstract The reconnaissance just after the 2011 earthquake off the Pacific coast of Tohoku reported the pulling out of anchor bolts of an upright cylindrical tank. Regarding the tank as an unanchored tank and employing the accelerogram recorded at 2 km off the tank, uplift of the unanchored tank during the 2011 earthquake off the Pacific coast of Tohoku was forensically examined. The time history of the uplift displacement of the tank computed by the explicit finite element analysis reveals that the unanchored tank uplifts during the earthquake and its uplift displacement is more than the length of the pulling out of the anchor bolts found by the reconnaissance. This implicitly corroborates applicability of the explicit finite element analysis to analyzing the tank rocking behavior. In addition to that, the uplift displacement of the unanchored tank was estimated by some calculation methods available to date and compared with that computed by the explicit finite element analysis. Comparison reveals that the calculation methods used herein may likely overestimate the uplift displacement of the unanchored tank and need to improve their calculation accuracy.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1281-1284
Author(s):  
Chun Gang Wang ◽  
Xu Wang ◽  
Guo Chang Li ◽  
Jin Guo Wu

Purlin connections have important influence on the stiffness, bearing capacity and the purlin calculation methods. A new kind of purlin connection was put forward in this paper. The mechanical behavior of the new connection was studied by finite element analysis using software ANSYS. As can be seen from the simulation results, the new connection can enhance the stiffness of purlin, and effect of each new wave connection is better than the promotion of purlin stiffness in the vibration wave connection. New connection has a better promotion effect for small stiffness of purlin.


Sign in / Sign up

Export Citation Format

Share Document