scholarly journals Mechanical and Functional Properties of a Novel Apatite-Ionomer Cement for Prevention and Remineralization of Dental Caries

Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3998 ◽  
Author(s):  
Rie Imataki ◽  
Yukari Shinonaga ◽  
Takako Nishimura ◽  
Yoko Abe ◽  
Kenji Arita

Especially in pediatric dentistry, prevention by the control of initial lesions prior to cavitation is very important, and application of a pit and fissure sealant is essential to achieve this. Numerous reports have suggested that resin-based sealants are inferior to sealants based on glass-ionomer cement (GIC), because of GIC’s many advantages, such as fluoride ion release properties and its good adhesion to tooth structures. However, the use of GIC is impeded due to its low flexural strength and fracture toughness. In this paper, we developed and characterized an apatite-ionomer cement (AIC) that incorporates hydroxyapatite (HAp) into the GIC; this development was aimed at not only reinforcing the flexural and compressive strength but also improving some functional properties for the creation of the material suitable for sealant. We examined the influence of differences in the compounding conditions of GIC powder, liquid, and HAp on flexural and compressive strengths, fracture toughness, fluoride ion release property, shear bond strength to bovine enamel, surface pH of setting cements, and acid buffer capability. These methods were aimed at elucidating the reaction mechanism of porous spherical-shaped HAp (HApS) in AIC. The following observations were deduced. (1) HAp can improve the mechanical strengths of AIC by strengthening the cement matrix. (2) The functional properties of AIC, such as acid buffer capability, improved by increasing the releasing amounts of various ions including fluoride ions. The novel AIC developed in this study is a clinically effective dental material for prevention and remineralization of tooth and initial carious lesion.

Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3077 ◽  
Author(s):  
Takako Nishimura ◽  
Yukari Shinonaga ◽  
Chikoto Nagaishi ◽  
Rie Imataki ◽  
Michiko Takemura ◽  
...  

In this study, we aimed to evaluate the effect of the addition of powdery cellulose nanofibers (CNFs) on the mechanical properties of glass ionomer cement (GIC) without negatively affecting its chemical properties. Commercial GIC was reinforced with powdery CNFs (2–8 wt.%) and characterized in terms of flexural strength, compressive strength, diametral tensile strength, and fluoride-ion release properties. Powdery CNFs and samples subjected to flexural strength testing were observed via scanning electron microscopy. CNF incorporation was found to significantly improve the flexural, compressive, and diametral tensile strengths of GIC, and the corresponding composite was shown to contain fibrillar aggregates of nanofibers interspersed in the GIC matrix. No significant differences in fluoride-ion release properties were observed between the control GIC and the CNF-GIC composite. Thus, powdery CNFs were concluded to be a promising GIC reinforcement agent.


Biomaterials ◽  
2001 ◽  
Vol 22 (6) ◽  
pp. 547-554 ◽  
Author(s):  
J.A. Williams ◽  
R.W. Billington ◽  
G.J. Pearson

1982 ◽  
Vol 10 (4) ◽  
pp. 333-341 ◽  
Author(s):  
M. Cranfield ◽  
A.T. Kuhn ◽  
G.B. Winter

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 494
Author(s):  
Ascensión Vicente ◽  
Francisco Javier Rodríguez-Lozano ◽  
Yolanda Martínez-Beneyto ◽  
María Jaimez ◽  
Julia Guerrero-Gironés ◽  
...  

The aim of this study was to evaluate the bond strength, microleakage, cytotoxicity, cell migration and fluoride ion release over time from a resin-modified glass-ionomer cement (RMGIC) enriched with bioactive glasses (BAGs) and a nanohybrid restorative polymer resin agent used as adhesion material in the cemented brackets. One hundred and twenty bovine lower incisors were divided into three groups: (Transbond Plus Self Etching Primer (TSEP)/Transbond XT (TXT), TSEP/ACTIVA, orthophosphoric acid gel/ACTIVA) and brackets were bonded. A bond strength test and microleakage test were applied. A fluoride release test was applied after 60 days for the TXT and ACTIVA group. To evaluate cytotoxicity and cell migration, a cell viability and scratch migration assay were done for each group. p values < 0.05 were considered significant. Regarding bond strength and microleakage test, no significant differences were found between TSEP/TXT and TSEP/ACTIVA. At 6.4 pH, ACTIVA showed a higher degree of fluoride ion release, which increased with acid pH (3.5), with a maximum fluoride secretion at 30 days. MTT assay revealed that TXT reduces the viability of gingival cells with significant differences (p < 0.001) compared to the untreated cells (control group). ACTIVA provides optimal adhesive and microfiltration properties, releases substantial amounts of fluoride ions in both acid and neutral media, and its biocompatibility is greater than that of traditional composite resin adhesive systems.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Rishnnia Murugan ◽  
Farinawati Yazid ◽  
Nurrul Shaqinah Nasruddin ◽  
Nur Najmi Mohamad Anuar

Glass ionomer cement (GIC) or polyalkenoate cement is a water-based cement that is commonly used in clinical dentistry procedures as a restorative material. It exhibits great properties such as fluoride-ion release, good biocompatibility, ease of use and great osteoconductive properties. However, GIC’s low mechanical properties have become a major drawback, limiting the cement’s usage, especially in high stress-bearing areas. Nanohydroxyapatite, which is a biologically active phosphate ceramic, is added as a specific filler into glass ionomer cement to improve its properties. In this review, it is shown that incorporating hydroxyapatite nanoparticles (nHA) into GIC has been proven to exhibit better physical properties, such as increasing the compressive strength and fracture toughness. It has also been shown that the addition of nanohydroxyapatite into GIC reduces cytotoxicity and microleakage, whilst heightening its fluoride ion release and antibacterial properties. This review aims to provide a brief overview of the recent studies elucidating their recommendations which are linked to the benefits of incorporating hydroxyapatite nanoparticles into glass ionomer cement.


Biomaterials ◽  
2002 ◽  
Vol 23 (13) ◽  
pp. 2783-2788 ◽  
Author(s):  
Beata Czarnecka ◽  
Honorata Limanowska-Shaw ◽  
John W. Nicholson

2000 ◽  
Vol 27 (7) ◽  
pp. 576-586 ◽  
Author(s):  
S.-Y. Lee ◽  
D.-R. Dong ◽  
H.-M. Huang ◽  
Y.-H. Shih

2007 ◽  
Vol 18 (4) ◽  
pp. 649-652 ◽  
Author(s):  
Beata Czarnecka ◽  
Honorata Limanowska-Shaw ◽  
Richard Hatton ◽  
John W. Nicholson

Sign in / Sign up

Export Citation Format

Share Document