scholarly journals Effects of Nanohydroxyapatite Incorporation into Glass Ionomer Cement (GIC)

Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
Rishnnia Murugan ◽  
Farinawati Yazid ◽  
Nurrul Shaqinah Nasruddin ◽  
Nur Najmi Mohamad Anuar

Glass ionomer cement (GIC) or polyalkenoate cement is a water-based cement that is commonly used in clinical dentistry procedures as a restorative material. It exhibits great properties such as fluoride-ion release, good biocompatibility, ease of use and great osteoconductive properties. However, GIC’s low mechanical properties have become a major drawback, limiting the cement’s usage, especially in high stress-bearing areas. Nanohydroxyapatite, which is a biologically active phosphate ceramic, is added as a specific filler into glass ionomer cement to improve its properties. In this review, it is shown that incorporating hydroxyapatite nanoparticles (nHA) into GIC has been proven to exhibit better physical properties, such as increasing the compressive strength and fracture toughness. It has also been shown that the addition of nanohydroxyapatite into GIC reduces cytotoxicity and microleakage, whilst heightening its fluoride ion release and antibacterial properties. This review aims to provide a brief overview of the recent studies elucidating their recommendations which are linked to the benefits of incorporating hydroxyapatite nanoparticles into glass ionomer cement.

Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3077 ◽  
Author(s):  
Takako Nishimura ◽  
Yukari Shinonaga ◽  
Chikoto Nagaishi ◽  
Rie Imataki ◽  
Michiko Takemura ◽  
...  

In this study, we aimed to evaluate the effect of the addition of powdery cellulose nanofibers (CNFs) on the mechanical properties of glass ionomer cement (GIC) without negatively affecting its chemical properties. Commercial GIC was reinforced with powdery CNFs (2–8 wt.%) and characterized in terms of flexural strength, compressive strength, diametral tensile strength, and fluoride-ion release properties. Powdery CNFs and samples subjected to flexural strength testing were observed via scanning electron microscopy. CNF incorporation was found to significantly improve the flexural, compressive, and diametral tensile strengths of GIC, and the corresponding composite was shown to contain fibrillar aggregates of nanofibers interspersed in the GIC matrix. No significant differences in fluoride-ion release properties were observed between the control GIC and the CNF-GIC composite. Thus, powdery CNFs were concluded to be a promising GIC reinforcement agent.


1982 ◽  
Vol 10 (4) ◽  
pp. 333-341 ◽  
Author(s):  
M. Cranfield ◽  
A.T. Kuhn ◽  
G.B. Winter

Symmetry ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 494
Author(s):  
Ascensión Vicente ◽  
Francisco Javier Rodríguez-Lozano ◽  
Yolanda Martínez-Beneyto ◽  
María Jaimez ◽  
Julia Guerrero-Gironés ◽  
...  

The aim of this study was to evaluate the bond strength, microleakage, cytotoxicity, cell migration and fluoride ion release over time from a resin-modified glass-ionomer cement (RMGIC) enriched with bioactive glasses (BAGs) and a nanohybrid restorative polymer resin agent used as adhesion material in the cemented brackets. One hundred and twenty bovine lower incisors were divided into three groups: (Transbond Plus Self Etching Primer (TSEP)/Transbond XT (TXT), TSEP/ACTIVA, orthophosphoric acid gel/ACTIVA) and brackets were bonded. A bond strength test and microleakage test were applied. A fluoride release test was applied after 60 days for the TXT and ACTIVA group. To evaluate cytotoxicity and cell migration, a cell viability and scratch migration assay were done for each group. p values < 0.05 were considered significant. Regarding bond strength and microleakage test, no significant differences were found between TSEP/TXT and TSEP/ACTIVA. At 6.4 pH, ACTIVA showed a higher degree of fluoride ion release, which increased with acid pH (3.5), with a maximum fluoride secretion at 30 days. MTT assay revealed that TXT reduces the viability of gingival cells with significant differences (p < 0.001) compared to the untreated cells (control group). ACTIVA provides optimal adhesive and microfiltration properties, releases substantial amounts of fluoride ions in both acid and neutral media, and its biocompatibility is greater than that of traditional composite resin adhesive systems.


Materials ◽  
2019 ◽  
Vol 12 (23) ◽  
pp. 3998 ◽  
Author(s):  
Rie Imataki ◽  
Yukari Shinonaga ◽  
Takako Nishimura ◽  
Yoko Abe ◽  
Kenji Arita

Especially in pediatric dentistry, prevention by the control of initial lesions prior to cavitation is very important, and application of a pit and fissure sealant is essential to achieve this. Numerous reports have suggested that resin-based sealants are inferior to sealants based on glass-ionomer cement (GIC), because of GIC’s many advantages, such as fluoride ion release properties and its good adhesion to tooth structures. However, the use of GIC is impeded due to its low flexural strength and fracture toughness. In this paper, we developed and characterized an apatite-ionomer cement (AIC) that incorporates hydroxyapatite (HAp) into the GIC; this development was aimed at not only reinforcing the flexural and compressive strength but also improving some functional properties for the creation of the material suitable for sealant. We examined the influence of differences in the compounding conditions of GIC powder, liquid, and HAp on flexural and compressive strengths, fracture toughness, fluoride ion release property, shear bond strength to bovine enamel, surface pH of setting cements, and acid buffer capability. These methods were aimed at elucidating the reaction mechanism of porous spherical-shaped HAp (HApS) in AIC. The following observations were deduced. (1) HAp can improve the mechanical strengths of AIC by strengthening the cement matrix. (2) The functional properties of AIC, such as acid buffer capability, improved by increasing the releasing amounts of various ions including fluoride ions. The novel AIC developed in this study is a clinically effective dental material for prevention and remineralization of tooth and initial carious lesion.


Biomaterials ◽  
2001 ◽  
Vol 22 (6) ◽  
pp. 547-554 ◽  
Author(s):  
J.A. Williams ◽  
R.W. Billington ◽  
G.J. Pearson

2016 ◽  
Vol 40 (2) ◽  
pp. 136-140 ◽  
Author(s):  
Mustafa Altunsoy ◽  
Mehmet Tanrıver ◽  
Uğur Türkan ◽  
Mehmet Emin Uslu ◽  
Sibel Silici

Objective: To evaluate the effect of ethanolic extracts of propolis (EEP) addition in different proportions to glass ionomer cement (GIC) on microleakage and microhardness of GIC. Study design: The cement was divided into four groups: one using the original composition and three with 10%, 25%, and 50% EEP added to the liquid and then manipulated. For microleakage assessment, sixty primary molars were randomly divided into four groups (n=15). Standard Class II cavities were prepared and then filled with EEP in different proportions added to GICs. Microleakage test was performed using a dye penetration method. The data were analyzed using one-way ANOVA and Mann - Whitney U tests (α = 0.05). Disc shaped specimens were prepared from the tested GIC to determine Vickers hardness (VHN). The data were analyzed using one-way ANOVA and post hoc Tukey test (α = 0.05). Results: There were no statistically significant differences between the groups in terms of microleakage (p &gt; 0.05). There were statistically significant differences between the VHN values of groups (p &lt; 0.05). Increasing addition of EEP to GIC statistically significantly increased VHN value of GIC (p &lt; 0.05). Conclusions: The addition of EEP to GIC increased the microhardness of the GIC and did not adversely affect the microleakage. Thus, it might be used during routine dental practice due to its antibacterial properties


2018 ◽  
Vol 7 (1) ◽  
pp. 18
Author(s):  
Egi Utia Asih ◽  
Martha Mozartha ◽  
Billy Sujatmiko

Glass ionomer cement (GIC), restorative material in dentistry, are composed of glass powders and polyacrylic acid. GIC can release fluoride that acts as an antibacterial. Various study had been conducted to improve that antibacterial properties, but it can affect the physical and mechanical properties of GIC. The purpose of this study was to determine the effect of addition of triclosan antibacterial agent on the setting time of GIC. To obtain 2.5 % triclosan, 0,25 gram of triclosan powder was mixed into 9,75 gram of GIC powder. The sample was divided into 2 groups: control group (n=16) and treatment group (n=16). The setting time was measured using gilmore needle, by penetrating a needle to the surface of specimens with an interval of 10 seconds until the needle left no traces on the surface of specimens. Statistical analysis was done byT-test. The result showed that p value > 0,05. The conclusion is the addition of triclosan antibacterial agent do not affect the setting time of GIC


Sign in / Sign up

Export Citation Format

Share Document