scholarly journals Evaluation of Stress–Strain Behavior of Self-Compacting Rubber Lightweight Aggregate Concrete under Uniaxial Compression Loading

Materials ◽  
2019 ◽  
Vol 12 (24) ◽  
pp. 4064 ◽  
Author(s):  
Jing Lv ◽  
Tianhua Zhou ◽  
Qiang Du ◽  
Kunlun Li ◽  
Kai Sun

The recycling of waste tires in lightweight aggregate concrete (LC) would achieve huge environmental and societal benefits, but the effects of rubber particles on the partial properties of LC are not clear (e.g., the stress–strain relationship). In this paper, uniaxial compressive experiments were conducted to evaluate the stress–strain relationship of self-compacting rubber lightweight aggregate concrete (SCRLC). Rubber particles were used to replace sand by volume, and substitution percentages of 0%, 10%, 20%, 30%, 40%, and 50% were set as influence factors. Experimental results indicate that with increased rubber particles substitution percentage, the cubic compressive strength and axial compressive strength of SCRLC decreased, while the failure modes of SCRLC prism specimens gradually changed from brittle to ductile failure. As the rubber particles substitution percentage increased from 0% to 50%, the peak strain of SCRLC increased whereas peak stress, elastic modulus, and peak secant modulus of SCRLC deceased, the descending stage of stress–strain curves became softer. The rubber particles substitution percentage of 30% was the critical point at which an obvious change in the properties of SCRLC occurred. Based on the data collected from experimental studies, a predictive model for SCRLC was established and a further prediction of the SCRLC stress–strain relationship was given.

2019 ◽  
Vol 2019 ◽  
pp. 1-14 ◽  
Author(s):  
Jing Lv ◽  
Qiang Du ◽  
Tianhua Zhou ◽  
Zuoqian He ◽  
Kunlun Li

Increasing amount of waste tires caused huge environment issues in recent years. Recycling concrete is an effective way. In this paper, waste tires are crushed into particles and incorporated in lightweight aggregate concrete to prepare a special concrete (self-compacting rubber lightweight aggregate concrete (SCRLC)). A detailed experimental research of effects of rubber particles on the properties of SCRLC and corresponding mortar is conducted. The results show that increasing the rubber particles replacement ratio leads to a raising of yield stress and plastic viscosity of mortar pastes. Flowability, filling capacity, and passing ability of SCRLC decline and the segregation resistance property of SCRLC improves as the rubber particles replacement ratio increases. Well, linear correlations between slump flow of SCRLC and shear stress of corresponding mortar pastes and segregation ratio of SCRLC and plastic viscosity of corresponding mortar pastes are obtained. In order to ensure that rubber lightweight aggregate concrete can compact by itself, the upper limit of shear stress of corresponding mortar pastes is 231.7 Pa and the lower limit of plastic viscosity of corresponding mortar pastes is 3.72 Pa·s. Compressive strength, splitting tensile strength, flexural strength, and elastic modulus of SCRLC and compressive strength of corresponding mortar decrease as the rubber particles replacement ratio increases. The 28-day compressive strength of SCRLC can meet the requirements of lightweight aggregate concrete structures until the rubber particles replacement ratio reaches 50%.


2010 ◽  
Vol 163-167 ◽  
pp. 1762-1767 ◽  
Author(s):  
Xiang Liu ◽  
Jiang Tao Kong

According to the contrast test of LC30, LC40 lightweight aggregate concrete and C30, C40 common concrete , the text researched the mechanical property of lightweight aggregate concrete and ordinary concrete in the same strength grade and obtained the regularity of stress-strain curve of lightweight aggregate concrete in different strength grade. Then we contrasted the experimental results and planning model, analysed the difference, and suggested that the standards should improve the descent stage of the stress-strain curve of lightweight aggregate concrete combined with correlative experiments data, and give the equation of the descent stage of stress-strain curves. Concrete material in axial compression is the basic physical mechanical performance of concrete material, and is the main basis for researching bearing capacity and deformation of concrete construction. The stress-strain relationship is all-around macroscopic reaction of basal compressive property . There have been many experiments work about the stress-strain relationship of lightweight aggregate concrete at home and abroad , and found the peak strain of lightweight aggregate concrete is higher than that of ordinary concrete in the context of same peak stress .In this paper, on the basis of experimental investigations of lightweight aggregate concrete , aim at the stress-strain relationship ,we have take comparison experiment about LC30,LC40 lightweight aggregate concrete and C30,C40 ordinary concrete , and sort out stress-strain curve under the condition of the shaft center being compressed, so get the average tress-strain curve of LC30,LC40 lightweight aggregate concrete , and analyse the curve.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Anjun Li ◽  
Gaoqiang Zhou ◽  
Xianggang Zhang ◽  
Ercong Meng

A novel recycled aggregate concrete was prepared by replacing the natural aggregate with recycled lightweight aggregate. Subsequently, the mechanical properties and compressive stress-strain constitutive relation of the recycled lightweight aggregate concrete (RLWAC) were explored. For this purpose, the recycled lightweight aggregate (RLWA) replacement ratio (0%, 25%, 50%, 75%, and 100%) was selected as a variable, and the compressive strength of 15 cube and 30 prism specimens was evaluated. The failure morphology of the specimen was subsequently characterized, along with the cubic compressive strength, axial compressive strength, peak strain, ultimate strain, and other performance indices. The influence of the replacement ratio for the specimen indices of the RLWAC was also analyzed. It was observed that the dry apparent density of RLWAC decreased gradually on increasing the replacement ratio. Compared with 0% replacement ratio, a decrease of 6.50%, 11.39%, 21.84%, and 27.54% was observed, respectively. On enhancing the RLWA replacement ratio, the compressive strength, peak strain, and ultimate strain of RLWAC were observed to be gradually reduced. As the replacement ratio was increased from 75% to 100%, the peak strain was noted to decrease the most by about 6.8%. As the replacement ratio was increased from 50% to 75%, the ultimate strain decreased the most by about 14.2%. Based on the experimental findings, the functional relationships of the strength indices and the conversion value of each strength index with the replacement ratio were also established. Finally, based on the model proposed by the existing model, the stress-strain equation of RLWAC was developed, and the fitting results were observed to be in good agreement with the test results.


2014 ◽  
Vol 919-921 ◽  
pp. 1974-1978
Author(s):  
Mei Yan Hang ◽  
Cheng Xiao Sun ◽  
Pei Yu Zhang

The article studies the impact of steel fiber on the performance of lightweight aggregate concrete,including compressive strength, flexural strength, modulus of elasticity and impact toughness. The experimental studies show that steel fiber has little effect on the compressive strength of lightweight aggregate concrete, however, it can improve the pattern obviously. With the increasing of steel fiber content, the flexural strength and impact toughness of concrete increases. With the increasing of steel fiber content ,the elastic modulus of concrete also increases. The studies of this paper provide a certain technical references with the future research of steel fiber reinforced lightweight aggregate concrete.


2018 ◽  
Vol 8 (8) ◽  
pp. 1324 ◽  
Author(s):  
How-Ji Chen ◽  
Chung-Hao Wu

Expanded shale lightweight aggregates, as the coarse aggregates, were used to produce lightweight aggregate concrete (LWAC) in this research. At the fixed water-cement ratio, paste quantity, and aggregate volume, the effects of various aggregate gradations on the engineering properties of LWAC were investigated. Comparisons to normal-weight concrete (NWC) made under the same conditions were carried out. From the experimental results, using normal weight aggregates that follow the specification requirements (standard gradation) obtained similar NWC compressive strength to that using uniform-sized aggregates. However, the compressive strength of LWAC made using small uniform-sized aggregates was superior to that made from standard-grade aggregates. This is especially conspicuous under the low water-cement ratio. Even though the workability was affected, this problem could be overcome with developed chemical additive technology. The durability properties of concrete were approximately equal. Therefore, it is suggested that the aggregate gradation requirement of LWAC should be distinct from that of NWC. In high strength LWAC proportioning, following the standard gradation suggested by American Society for Testing and Materials (ASTM) is optional.


Sign in / Sign up

Export Citation Format

Share Document