machined surface roughness
Recently Published Documents


TOTAL DOCUMENTS

102
(FIVE YEARS 22)

H-INDEX

9
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 22
Author(s):  
Dariusz Lipiński ◽  
Kamil Banaszek ◽  
Łukasz Rypina

This paper presents an effectiveness analysis of the grinding process with the use of a new multi-layer abrasive tool. The designed abrasive tool consists of external layers with a conventional structure, whose task is to decrease the grinding wheel load and ensure high grinding volumetric efficiency. The inner layer of the grinding wheel contains a 30% addition of abrasive aggregates. The task of the inner layer is to provide lower roughness of the machined surface. The aim of the research presented in this paper was to evaluate the topography of the designed abrasive tool and to analyze the middle layer properties influencing the machined surface roughness. The differentiation of the active surface features of the abrasive tool was determined for the conventional layer and the layer with the addition of abrasive aggregates. The machining potential of the layers was also determined using the Shos parameter. The surface topography of Ti-6Al-4V alloys ground with the use of a multi-layer wheel and a conventional grinding wheel was analyzed. With the application of the bootstrap hypothesis, the set of roughness parameters differentiating the topography of ground surfaces was determined.


2021 ◽  
Author(s):  
Mingyang Wu ◽  
Jianyu Zhang ◽  
Chunjie Ma ◽  
Yali Zhang ◽  
Yaonan Cheng

Abstract Contour bevel gears have the advantages of high coincidence, low noise and large bearing capacity, which are widely used in automobile manufacturing, shipbuilding and construction machinery. However, the quality of the tooth surface has a significant impact on the transmission accuracy of the gear, so it is of great significance to optimize the surface quality of the contour bevel gear. This paper firstly analyzes the formation process of machined surface roughness of contour bevel gears on the basis of generating machining method, and dry milling experiments of contour bevel gears are conducted to analyze the effects of cutting speed and feed rate on the machined surface roughness and surface topography of the workpiece. Then, the surface defects on the machined surface of the workpiece are studied by SEM, and the causes of the surface defects are analyzed by EDS. After that, XRD is used to compare the microscopic grains of the machined surface and the substrate material for diffraction peak analysis, and the effect of cutting parameters on the microhardness of the workpiece machined surface is investigated by work hardening experiment. The research results are of great significant for improving the machining accuracy of contour bevel gears, reducing friction losses and improving transmission efficiency.


2021 ◽  
Author(s):  
Yang Liu ◽  
Ningsong Qu ◽  
Zhi Qiu

Abstract Electrolyte jet electrochemical turning is an effective method to realize high-quality machining of titanium alloy rotating components; however, minimal research has been carried out in this field. This is because it is difficult to control the machining flow field, which leads to poor machining surface quality. In this work, numerical simulations were used to optimize the machining flow field and reduce the proportion of gas that mixed into the machining area. This can promote participation of the tool electrode tip in the electrochemical reaction and improve the machining efficiency. The effectiveness of the optimized machining flow field for jet electrochemical turning was verified experimentally. The results showed that all three kinds of revolving TB6 titanium alloy samples with different structures could maintain the original contour shape, with a contour error <1% and a machined surface roughness reaching Ra 2.414 μm. The results demonstrate the application potential of the jet electrochemical turning process.


Author(s):  
A. M. Romanenko ◽  
D. B. Shatko ◽  
A. A. Nepogozhev ◽  
Ya. S. Karavaev

The paper focuses on research into processing of high-alloy corrosion resistant steels by the method of centreless circular grinding. The physical and mechanical properties of such steels determine certain difficulties in their grinding as compared with other materials, which necessitates a thorough investigation of this issue. The paper presents experimental data on the dependence of machined surface roughness and hardness, as well as workpiece surface average temperature and microhardness, on the machining conditions and grinding wheel characteristics.


2021 ◽  
Vol 2021 (4) ◽  
pp. 4836-4840
Author(s):  
ROBERT STRAKA ◽  
◽  
JOZEF PETERKA ◽  
TOMAS VOPAT ◽  
◽  
...  

The article compares two cutting edge preparation methods and their influence on the machined surface roughness of the difficult to cut nickel alloy Inconel 718 and the tool wear of cutting inserts made of cemented carbide. The manufacturing and preparation process of cutting inserts used in the experiment were made by Dormer Pramet. The preparation methods used in the experiment were drag finishing and brushing. Cutting parameters did not change during the whole turning process to maintain the same conditions in each step of the process and were determined based on tests for a semi-finishing operation of the turning process. To obtain durability of 25 to 30 minutes with controlled development of the tool wear the cutting parameters were determined with cooperation with the cutting inserts manufacturer.


2021 ◽  
pp. 107754632110144
Author(s):  
Yiqing Yang ◽  
Haoyang Gao ◽  
Qiang Liu

Turning cutting tool with large length–diameter ratio has been essential when machining structural part with deep cavity and in-depth hole features. However, chatter vibration is apt to occur with the increase of tool overhang. A slender turning cutting tool with a length–diameter ratio of 7 is developed by using a vibration absorber equipped with piezoelectric ceramic. The vibration absorber has dual functions of vibration transfer to the absorber mass and vibration conversion to the electrical energy via the piezoelectric effect. Equations of motion are established considering the dual damping from the piezoelectric ceramic and rubber gasket. The equivalent damping of piezoelectric ceramic is derived, and the geometries are optimized to achieve optimal vibration suppression. The modal analysis demonstrates that the cutting tool with the vibration absorber can reach 80.1% magnitude reduction. Machining tests are carried out in the end. The machining acceleration and machined surface roughness validate the vibration suppression of the VA, and the output voltage by the piezoelectric ceramic demonstrates the ability of vibration sensing.


2021 ◽  
Author(s):  
Ri Pan ◽  
Ren Xingfei ◽  
Zhenzhong Wang ◽  
Dongju Chen ◽  
Jinwei Fan

Abstract The relational model between machined surface roughness (MSR) and the adopted key machining parameters (KMPs) significantly influences the predictability and controllability of the machining process; therefore, it has attracted considerable attention. However, two critical problems still persist in this field. First, although most existing studies focus on the prediction model for MSR (forward model), wherein the MSR is dependent on input KMPs values, the inverse model that can calculate the KMP based on input MSR value is equally important; however, the inverse model has not been investigated as extensively as the forward model. The second issue is that most of the existing forward models are mainly established based on mechanism analysis; however, due to the complexity of most machining processes, the accuracy and generality of the model are not optimal. Therefore, this paper proposes a universal method for mathematically establishing the inverse model of the relation between the MSR and KMP. Initially, based on the response surface methodology, orthogonal experiments were designed and conducted, and the results were used to establish the forward model between the MSR and KMP. Subsequently, by combining the forward model with a self-developed genetic algorithm-based multi-objective optimization algorithm, an establishing method for inverse model between MSR and KMPs was proposed. Finally, experiments were conducted to validate the developed models. The experimental results show that for the forward model, all the 10 experimental MSR values approach the MSR values predicted by the forward model, and the average deviation was only approximately 7%. Contrarily, for the inverse model, the average deviation was only approximately 7.64%. Both these results verify the accuracy and effectiveness of the proposed models. With this method, as long as the desired processing results and constraints are given, the process parameters can be accurately derived.


2021 ◽  
Vol 1020 ◽  
pp. 75-82
Author(s):  
Thi Hong Tran ◽  
Thanh Danh Bui ◽  
Hoang Tu Ly ◽  
Ngoc Vu Ngo ◽  
Thanh Tu Nguyen ◽  
...  

This paper presents an optimization of dressing conditions for SKD-11 steel grinding using HaiDuong grinding wheel made in Vietnam. Taguchi method was used to design experiment and calculate the optimized dressing conditions. Effects of the six input parameters including feed rate (S), depth of rough dressing cut (aedr), rough dressing times (nr), depth of finish dressing cut (aedf), finish dressing times (nf) and non-feeding dressing (nnon) with 4 levels on the machined surface roughness were investigated for optimization process. To find out the influence degree of each input parameter on output results, S/N ratio was analysized. Experimental results show that the average surface roughness after 3 times of the repeated experiments was 0.208 μm and deviation was 11.23% comparing with the predicted values.


Sign in / Sign up

Export Citation Format

Share Document