scholarly journals Effects of B2O3 on Melting Characteristics and Temperature-Dependent Viscosity of High-Basicity CaO–SiO2–FeOx–MgO Slag

Materials ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1214
Author(s):  
Junkai Chong ◽  
Yingying Shen ◽  
Peng Yang ◽  
Jianke Tian ◽  
Wenjuan Zhang ◽  
...  

In order to reduce the amount of fluorite during the steelmaking process for environmental protection, it is essential to investigate the fluorine-free slag system. Thus, high-basicity CaO–SiO2–FeOx–MgO slag with B2O3 content from 0% to 15% was designed, and its melting characteristics and viscosity were investigated. The influence of B2O3 content on the phase diagram of the slag system was calculated using FactSage 7.3, and the break temperature was determined from the curves of temperature-dependent viscosity. The results show that, with the increase in B2O3 content, the melting characteristics of the CaO–SiO2–FeOx–MgO/B2O3 slag system, including liquidus temperature, flow temperature, softening temperature, and hemispheric temperature, all decreased; the main phase of the slag system transformed from Ca2SiO4 into borosilicate, and finally into borate; the viscous flow activation energy reduced from 690 kJ to 130 kJ; the break temperature reduced from 1590 °C to 1160 °C. Furthermore, the melting characteristics and the break temperature of the slag system with 5% and 8% B2O3 content were found to be the closest to the values of fluorine-containing steel slag.

Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1300
Author(s):  
Evgenii S. Baranovskii ◽  
Vyacheslav V. Provotorov ◽  
Mikhail A. Artemov ◽  
Alexey P. Zhabko

This paper deals with a 3D mathematical model for the non-isothermal steady-state flow of an incompressible fluid with temperature-dependent viscosity in a pipeline network. Using the pressure and heat flux boundary conditions, as well as the conjugation conditions to satisfy the mass balance in interior junctions of the network, we propose the weak formulation of the nonlinear boundary value problem that arises in the framework of this model. The main result of our work is an existence theorem (in the class of weak solutions) for large data. The proof of this theorem is based on a combination of the Galerkin approximation scheme with one result from the field of topological degrees for odd mappings defined on symmetric domains.


Author(s):  
G. N. Sekhar ◽  
G. Jayalatha

A linear stability analysis of convection in viscoelastic liquids with temperature-dependent viscosity is studied using normal modes and Galerkin method. Stationary convection is shown to be the preferred mode of instability when the ratio of strain retardation parameter to stress relaxation parameter (elasticity ratio) is greater than unity. When the ratio is less than unity the possibility of oscillatory convection is shown to arise. Oscillatory convection is studied numerically for Rivlin-Ericksen, Walters B′, Maxwell and Jeffreys liquids by considering free-free and rigid-free isothermal/adiabatic boundaries. It is found that there is a tight coupling between the Rayleigh and Marangoni numbers, with an increase in one resulting in a decrease in the other. The effect of variable viscosity parameter is shown to destabilize the system. The problem reveals the stabilizing nature of strain retardation parameter and destabilizing nature of stress relaxation parameter, on the onset of convection. The Maxwell liquids are found to be more unstable than the one subscribing to Jeffreys description whereas the Rivlin-Ericksen and Walters B′ liquids are comparatively more stable. Rigid-free adiabatic boundary combination is found to give rise to a most stable system, whereas the free isothermal free adiabatic combination gives rise to a most unstable system. The problem has applications in non-isothermal systems having viscoelastic liquids as working media.


Sign in / Sign up

Export Citation Format

Share Document