scholarly journals On the Broadening of Single-Layer Metasurface Bandwidth by Coupling Resonances

Materials ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2063 ◽  
Author(s):  
Humberto Fernández Álvarez ◽  
María Elena de Cos Gómez ◽  
Fernando Las-Heras Andrés

In this contribution a new technique to increase the bandwidth of metasurfaces without increasing their profile is presented. This work takes advantage of the potential multiresonant behavior of a metamaterial whose unit cells comprise nested metallization geometries in the same layer. The novelty stems from the possibility of overlapping these resonances for increasing the bandwidth (instead of obtaining a multiresonant metasurface). Several guidelines to achieve the aforementioned bandwidth broadening, which are applicable to all metasurface designs, will be provided. An equivalent circuit model will be used to better explain the presented technique; then, it will be applied to several metasurface absorbers (MTAs), showing not only a bandwidth broadening but also an absorption reinforcement. Measurements will be also presented to corroborate the simulation results.

2021 ◽  
Vol 35 (11) ◽  
pp. 1378-1379
Author(s):  
Brinta Chowdhury ◽  
Thisara Walpita ◽  
B. Yang ◽  
A. Eroglu

The resonant characteristics of single split ring resonator-based metamaterial devices with single gap are presented using the analytical formulation developed for the lumped element equivalent circuit model. The characteristics of the metamaterial resonators have been investigated for different ring sizes, gap widths and substrate permittivity. Equivalent circuit model is developed for two ring structures. The analytical, and simulation results are compared and verified. The prototype has been then built and measured. It has been observed that all the results agree. The results presented in this paper can be used to develop devices at the THz range that can operate as sensors, antennas or tuning elements.


2015 ◽  
Vol 12 (3) ◽  
pp. 359-373
Author(s):  
Reza Ghanaee ◽  
Ahmad Darabi ◽  
Arash Kioumarsi ◽  
Mohammad Baghayipour ◽  
Mohammad Morshed

In this paper, a nonlinear magnetic equivalent circuit is presented as an analytical solution method for modeling of a permanent magnet linear synchronous motor (PMLSM). The accuracy of the proposed model is verified via comparing its simulation results with those obtained by two other methods. These two are the Maxwell?s Equations based analytical method and the wellknown finite elements method (FEM). Saturation and any saliency e.g. slotting effects can be considered properly by both nonlinear magnetic equivalent circuit and FEM, where it cannot be taken into account easily by the Maxwell?s Equations based analytical approach. Accordingly, as the simulation results presented in this paper confirm, the proposed nonlinear magnetic equivalent circuit is compatible with FEM regarding the accuracy while it requires very shorter execution time. Therefore, the magnetic equivalent circuit model of the present paper can be considered as a preferable substitute for the time consuming FEM and approximated analytical method built on Maxwell?s Equations in particular when required to be applied for a design optimization problem.


2011 ◽  
Vol 383-390 ◽  
pp. 7037-7042
Author(s):  
Shao Xin Zong ◽  
Chuan Nan Li ◽  
Chen Huai Lv ◽  
Guo Hua Xie ◽  
Yi Zhao ◽  
...  

In the commonly-used EDA software, there is no equivalent circuit model of top-emitting OLED for SPICE, so it is difficult while the OLED pixel driving circuits are designed such as in microdisplay applications. To solve the problem, its SPICE model of top-emitting OLED was studied in this paper. Three models including the diode-connected NMOS model, the single-diode model, and the double-diode paralleled model are discussed and their simulation results from EDA software HSPICE are compared. Results show that the fitted errors obtained from the diode-connected NMOS model is the smallest, but its simulated errors are the largest. The fitted errors and the simulated errors obtained from the single-diode model are also large. However, small fitted errors and simulated errors got from double-diode paralleled model show that this model satisfies the application of the designing for OLED pixel driving circuits.


2013 ◽  
Vol 2013 ◽  
pp. 1-16
Author(s):  
Zhaowen Yan ◽  
Zhicai Ma ◽  
Guochang Shi ◽  
Mingming Che

This paper focuses on the modeling method of common interconnects which act as coupling channels in the analysis of PCB immunity. Fast modeling and parameters extraction of power/ground plane pair are realized using cavity resonance method. The calculated results of the model match with the simulation results of HFSS within 9 GHz, which demonstrates the effectiveness of the modeling method. Besides, segmented via modeling method including the effect of power/ground plane pair is proposed. In this modeling method, via structure is decomposed into three parts, and each part is modeled, respectively. The modeling of single via and differential vias in single plane pair and multilayer is completed using this method. High accuracy is reached due to the adoption of the effect of power/ground plane pair and the adoption of second-order circuit model of capacitance and inductance, where the parameters can be gotten from analytic formulas. Finally, considering an actual signal network, for example, the equivalent circuit model of the network, is established, and every part of the equivalent circuit model is imported into Designer for cosimulation. The results are consistent with the simulation results of HFSS within 9 GHz.


2008 ◽  
Vol 104 (6) ◽  
pp. 064503 ◽  
Author(s):  
A. Haldi ◽  
A. Sharma ◽  
W. J. Potscavage ◽  
B. Kippelen

2012 ◽  
Vol 132 (1) ◽  
pp. 1-9 ◽  
Author(s):  
Satoshi Maruyama ◽  
Muneki Nakada ◽  
Makoto Mita ◽  
Takuya Takahashi ◽  
Hiroyuki Fujita ◽  
...  

Electronics ◽  
2021 ◽  
Vol 10 (14) ◽  
pp. 1644
Author(s):  
Qian Zhang ◽  
Huijuan Liu ◽  
Tengfei Song ◽  
Zhenyang Zhang

A novel, improved equivalent circuit model of double-sided linear induction motors (DLIMs) is proposed, which takes the skin effect and the nonzero leakage reactance of the secondary, longitudinal, and transverse end effects into consideration. Firstly, the traditional equivalent circuit with longitudinal and transverse end effects are briefly reviewed. Additionally, the correction coefficients for longitudinal and transverse end effects derived by one-dimensional analysis models are given. Secondly, correction factors for skin effect, which reflects the inhomogeneous air gap magnetic field vertically, and the secondary leakage reactance are derived by the quasi-two-dimensional analysis model. Then, the proposed equivalent circuit is presented, and the excitation reactance and secondary resistance are modified by the correction coefficients derived from the three analytical models. Finally, a three-dimensional (3D) finite element model is used to verify the proposed equivalent circuit model under varying air gap width and frequency, and the results are also compared with that of the traditional equivalent circuit models. The calculated thrust characteristics by the proposed equivalent circuit and 3D finite element model are experimentally validated under a constant voltage–frequency drive.


2021 ◽  
Vol 31 (5) ◽  
pp. 1-5
Author(s):  
Chaemin Im ◽  
Geonyoung Kim ◽  
Jeseok Bang ◽  
Kibum Choi ◽  
Soobin An ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document