scholarly journals Effect of Processing Route on Microstructure and Mechanical Properties in Single-Roll Angular-Rolling

Materials ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2471
Author(s):  
Hak Hyeon Lee ◽  
Kyo Jun Hwang ◽  
Hyung Keun Park ◽  
Hyoung Seop Kim

This paper reports the effect of the processing route on the microstructure and mechanical properties in the pure copper sheets processed by single-roll angular-rolling (SRAR). The SRAR process was repeated up to six passes in two processing routes, called routes A and C in equal-channel angular pressing. As the number of passes increased, the heterogeneous evolution of hardness and microstructural heterogeneities between the core and surface regions gradually became intensified in both processing routes. In particular, route A exhibited more prominent partial grain refinement and dislocation localization on the core region than route C. The finite element analysis revealed that the intense microstructural heterogeneities observed in route A were attributed to effective shear strain partitioning between the core and surface regions by the absence of redundant strain. On the other hand, route C induced reverse shearing and cancellation of shear strain over the entire thickness, leading to weak shear strain partitioning and delayed grain refinement. Ultimately, this work suggests that route A is the preferred option to manufacture reverse gradient structures in that the degree of shear strain partitioning and microstructural heterogeneity between the core and surface regions is more efficiently intensified with increasing the number of passes.

2014 ◽  
Vol 5 ◽  
pp. 1368-1375 ◽  
Author(s):  
C.G. Shivaprasad ◽  
S. Narendranath ◽  
Vijay Desai ◽  
Sujeeth Swami ◽  
M.S. Ganesha Prasad

Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 978 ◽  
Author(s):  
Pengfei Wang ◽  
Zhaodong Li ◽  
Guobiao Lin ◽  
Shitong Zhou ◽  
Caifu Yang ◽  
...  

Steels used for high-speed train wheels require a combination of high strength, toughness, and wear resistance. In 0.54% C-0.9% Si wheel steel, the addition of 0.075 or 0.12 wt % V can refine grains and increase the ferrite content and toughness, although the influence on the microstructure and toughness is complex and poorly understood. We investigated the effect of 0.03, 0.12, and 0.23 wt % V on the microstructure and mechanical properties of medium-carbon steels (0.54% C-0.9% Si) for train wheels. As the V content increased, the precipitation strengthening increased, whereas the grain refinement initially increased, and then it remained unchanged. The increase in strength and hardness was mainly due to V(C,N) precipitation strengthening. Increasing the V content to 0.12 wt % refined the austenite grain size and pearlite block size, and increased the density of high-angle ferrite boundaries and ferrite volume fraction. The grain refinement improved the impact toughness. However, the impact toughness then reduced as the V content was increased to 0.23 wt %, because grain refinement did not further increase, whereas precipitation strengthening and ferrite hardening occurred.


2017 ◽  
Vol 112 ◽  
pp. 04005 ◽  
Author(s):  
Daniela-Monica Iordache ◽  
Cătălin-Marian Ducu ◽  
Eduard-Laurentiu Niţu ◽  
Doina Iacomi ◽  
Adriana-Gabriela Plăiaşu

2017 ◽  
Vol 62 (3) ◽  
pp. 1819-1825
Author(s):  
V.C. Sinha ◽  
S. Kundu ◽  
S. Chatterjee

AbstractIn the present study, the effect of tool rotational speed on microstructure and mechanical properties of friction stir welded joints between commercially pure copper and 6351 Al alloy was carried out in the range of tool rotational speeds of 300-900 rpm in steps of 150 rpm at 30 mm/minutes travel speed. Up to 450 rpm, the interface of the joints is free from intermetallics and Al4Cu9intermetallic has been observed at the stir zone. However, Al4Cu9intermetallic was observed both at the interface and the stir zone at 600 rpm. At 750 and 900 rpm tool rotational speed, the layers of AlCu, Al2Cu3and Al4Cu9intermetallics were observed at the interface and only Al4Cu9intermetallics has been observed in the stir zone. The maximum ultimate tensile strength of ~207 MPa and yield strength of ~168 MPa along with ~6.2% elongation at fracture of the joint have been obtained when processed at 450 rpm tool rotational speed.


Sign in / Sign up

Export Citation Format

Share Document