scholarly journals Acoustic Emission Characteristics and Damage Mechanisms Investigation of Basalt Fiber Concrete with Recycled Aggregate

Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4009
Author(s):  
Guodong Li ◽  
Li Zhang ◽  
Fengnian Zhao ◽  
Jiaqi Tang

This paper presents the compression failure process of basalt fiber concrete with recycled aggregate and analyzes the main factors of basalt fiber and recycled aggregate affecting the compressive strength of recycled concrete. The damage mechanism of recycled aggregate concrete is analyzed by the acoustic emission technique. With the method of acoustic emission (AE) b-value analysis, the evolution and failure process of recycled concrete from the initial defect microcrack formation to the macroscopic crack is studied. Based on the AE clustering analysis method, the damage state of recycled concrete under load grade is investigated. Finally, the failure mode of recycled concrete is explored according to the RA-AF correlation method. The results show that when the concrete reaches the curing age, the strength grade of basalt fiber regenerated coarse aggregate concrete is the highest. The basalt fiber increases the strength of regenerated fine concrete by 4.5% and the strength of coarse concrete by 5%, and reduces the strength of fully recycled aggregate concrete by 6.7%. The b-value divides concrete into three stages: initial damage, stable development of internal damage, and internal damage. The variation of AE energy, count, and event number is related to AE activity and crack growth rate. Matrix cracking is the main damage state of concrete, which is greatly affected by the strength of cement mortar. The load grade of fiber cracking in fully recycled aggregate, recycled fine aggregate, and recycled coarse aggregate concrete is 65, 90, and 85%, respectively. Basalt fiber increases the tensile failure event point of recycled concrete and delays the cracking of recycled concrete under compression. When the load grades of fully recycled fiber, recycled fine aggregate fiber, and recycled coarse aggregate fiber concrete are 65–95, 90–100, and 85–100%, respectively, the tensile failure activity increases.

2009 ◽  
Vol 620-622 ◽  
pp. 255-258 ◽  
Author(s):  
Cheol Woo Park

As the amount of waste concrete has been increased and recycling technique advances, this study investigates the applicability of recycled concrete aggregate for concrete structures. In addition fly ash, the industrial by-product, was considered in the concrete mix. Experimental program performed compressive strength and chloride penetration resistance tests with various replacement levels of fine recycled concrete aggregate and fly ash. In most case, the design strength, 40MPa, was obtained. It was known that the replacement of the fine aggregate with fine RCA may have greater influence on the strength development rather than the addition of fly ash. It is recommended that when complete coarse aggregate is replaced with RCA the fine RCA replacement should be less than 60%. The recycled aggregate concrete can achieve sufficient resistance to the chloride ion penetration and the resistance can be more effectively controlled by adding fly ash. It I finally conclude that the recycled concrete aggregate can be successfully used in the construction field and the recycling rate of waste concrete and flay ash should be increased without causing significant engineering problems.


2012 ◽  
Vol 174-177 ◽  
pp. 1277-1280 ◽  
Author(s):  
Hai Yong Cai ◽  
Min Zhang ◽  
Ling Bo Dang

Compressive strengths of recycled aggregate concrete(RAC) with different recycled aggregates(RA) replacement ratios at 7d, 28d, 60d ages are investigated respectively. Failure process and failure mode of RAC are analyzed, influences on compressive strength with same mix ratio and different RA replacement ratios are analyzed, and the reason is investigated in this paper. The experimental results indicate that compressive strength of recycled concrete at 28d age can reach the standard generally, it is feasible to mix concrete with recycled aggregates, compressive strength with 50% replacement ratio is relatively high.


2013 ◽  
Vol 671-674 ◽  
pp. 1736-1740
Author(s):  
Xue Yong Zhao ◽  
Mei Ling Duan

The complete stress-strain curves of recycled aggregate concrete with different recycled coarse aggregate replacement percentages were tested and investigated. An analysis was made of the influence of varying recycled coarse aggregate contents on the complete stress-strain curve, peak stress, peak strain and elastic modulus etc. The elastic modulus of RC is lower than natural concrete (NC), and with the recycled coarse aggregate contents increase, it reduces. While with the increase of water-cement ratio (W/C), recycled concrete compressive strength and elastic modulus improve significantly. In addition, put forward a new equation on the relationship between Ec and fcu of the RC.


2011 ◽  
Vol 261-263 ◽  
pp. 19-23 ◽  
Author(s):  
Da Xing Qian ◽  
Ying Wei Yun ◽  
Ii Young Jang ◽  
Jong Hoe Kim

Recently reutilization of waste concrete becomes one of the hottest issues in civil engineering field throughout the world. However, most of the concerned research focuses on the RCA (recycled coarse aggregate) by simply crushing waste concrete. In this paper shucking technique is developed to secondary process the simply crushing waste concrete for improving the performance of RCA concrete. Test has been done to demonstrate that performances such as strength, elastic modulus et al. of shucking RCA concrete is better than those of common recycled concrete. Simultaneously, beam specimens are made to test the flexural behavior of shucking RCA concrete. Results showed that the deflection of shucking RCA concrete beam is approximately same with that of natural coarse aggregate concrete beam, which solves current problem that recycled aggregate concrete beam has bigger deflection than common concrete beam. The new shucking technique developed in this paper has many advantages to be applied in practical engineering and it has obvious economic benefits and social effect.


2017 ◽  
Vol 11 (1) ◽  
pp. 270-280 ◽  
Author(s):  
Haicheng Niu ◽  
Yonggui Wang ◽  
Xianggang Zhang ◽  
Xiaojing Yin

Introduction: Freeze-thaw resistance of recycled aggregate concrete with partial or total replacement of recycled aggregate compared with that of natural aggregate concrete was investigated in this paper. Method: Ninety specimens were fabricated to study the influence of different recycled aggregate replacement ratios on the surface scaling, mass loss, and residual compressive strength after 100 freeze-thaw cycles. Results: The experiment results indicate that the type of recycled aggregate and its replacement ratio have significant effects on the freeze-thaw performance. The cubic compressive strength of recycled aggregate concrete is overall slightly lower than that of normal concrete. After 100 freeze-thaw cycles, the compressive strength decreases and the reduction extent increases with increasing replacement rate of recycled aggregate. The surface scaling of reinforced recycled concrete prisms tends to be more severe with the increase of freeze-thaw cycles. Conclusion: Furthermore, a notable rise in mass loss and the bearing capacity loss is also found as the substitution ratio increases. Under the same replacement rate, recycled fine aggregate causes more negative effects on the freeze-thaw resistance than recycled coarse aggregate.


Author(s):  
Sung-Mo Choi ◽  
Won Ho Choi ◽  
Kangseok Lee ◽  
Jae-Yong Ryoo ◽  
Sunhee Kim ◽  
...  

Recycled aggregate is an environmentally self-sustainable solution that can reduce construction waste and replace natural aggregates. However, there is a disadvantage in concrete such as initial strength drop and long-term strength development. Therefore, the interaction effect of the two materials can be expected by filling the cyclic aggregate concrete in the CFT column. In order to develop a concrete with compressive strength of 50 MPa as a recycled aggregate, we carried out a mixing experiment and fabricated 18 specimens to confirm the compressive behavior of a RCFT (Recycled Concrete Filled Tube) column that can be applied to actual buildings. Variable is the shape and thickness of steel pipe, concrete strength and mixing ratio, and coarse aggregate and fine aggregate are all used as recycled aggregate. The optimum mixing ratio for recycled aggregate concrete to be filled in the CFT filled steel pipe was found through three concrete preliminary mixing experiments. In addition, the compression test of the RCFT column was carried out to observe and analyze the buckling shape of the CFT column. Based on the analysis of the buckling configuration and the experimental data, the load-displacement curves of the specimens were drawn and the compressive behavior was analyzed. 


2017 ◽  
Vol 11 (1) ◽  
pp. 43-53 ◽  
Author(s):  
Huaxin Liu ◽  
Jianwei Yang ◽  
Xiangqing Kong ◽  
Xuxu Xue

In order to study the basic mechanical properties of basalt fiber reinforced recycled aggregate concrete, the concrete mix ratio, the length and the volume mixing ratio of chopped basalt fiber yarn are designed for changing factors. A total of 324 specimens have been completed for this investigation. The compressive strength, splitting tensile strength, elastic modulus and axial compressive strength of basalt fiber recycled concrete have carried on the experimental study and theoretical analysis as 81 specimens, respectively. In all specimens, coarse aggregate were replaced by recycled aggregate with a replacement rate of 100%. Experimental results show that the failure process and failure pattern of basalt fiber recycled concrete and ordinary concrete are similar; With the improvement of concrete strength grade; When the volume mixing ratio of chopped basalt fiber yarn is 0.2%, the mechanic performance can effectively improve, and the length of chopped basalt fiber has less effect on the mechanical indexes; The conversion relation between common concrete mechanics index is no longer suitable for basalt fiber recycled concrete, new conversion formulas for basalt fiber recycled concrete between the mechanics index were presented through fitting experimental data.


2013 ◽  
Vol 671-674 ◽  
pp. 1865-1868
Author(s):  
Tao Long ◽  
Shi Hai Dong ◽  
Shi Ming Cui ◽  
Qing Yuan Wang

It is widely considered that crushed construction aggregate waste creates a lower compressive strength kind of concrete. This paper presents experimental investigation on axial compression strength of 18 recycled aggregate concrete cubes under the freeze-thaw test. The research has focused on the effect of the freezing-thawing test on the ultimate carrying capacity of recycled concrete cubes with different coarse aggregate replacement ratio. This study confirms that freezing-thawing cycles have a greater effect on the ultimate bearing capacity of recycled concrete cubes. Some measures should be taken to prevent the recycle concrete from the freeze-thaw damage, for example add air entraining agent to concrete.


2012 ◽  
Vol 217-219 ◽  
pp. 866-868
Author(s):  
Wei Ren

This paper studies the construction waste recycled coarse aggregate concrete blocks including waste and brick, through the control of brick in the admixture of recycled coarse aggregate concrete, compound to regenerate waste away in the analysis and research of the brick dosage of recycled concrete performance impact.


2011 ◽  
Vol 194-196 ◽  
pp. 1001-1006 ◽  
Author(s):  
Hai Feng Yang ◽  
Zhi Heng Deng ◽  
Xue Liang Li

24 100mm × 100mm × 300mm recycled concrete prisms and 96 150mm × 150mm × 150mm cubes are completed in this paper.The relationships of the carbonation depth in each carbonation age with replacement rate of recycled coarse aggregate and fly ash is studied; The SEM is used to observe the interface structure of recycled coarse aggregate concrete and compared with ordinary concrete, and finally,a recycled concrete carbonation model is proposed. The results showed that: the substitution of recycled coarse aggregate and fly ash cut down the recycled concrete carbonation resistance significantly, which are related with the replacement rate; the content of Ca(OH)2 in the recycled aggregate concrete decreased ,also there are obvious interface transition zone between the recycled coarse aggregate and the new cement;obvious cracks and large voids are exist before the recycled aggregate concrete is loaded, which lead directly to lower carbonation resistance of the recycled concrete.


Sign in / Sign up

Export Citation Format

Share Document