scholarly journals Real-Time Optimization of Anti-Reflective Coatings for CIGS Solar Cells

Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4259
Author(s):  
Grace Rajan ◽  
Shankar Karki ◽  
Robert W. Collins ◽  
Nikolas J. Podraza ◽  
Sylvain Marsillac

A new method combining in-situ real-time spectroscopic ellipsometry and optical modeling to optimize the thickness of an anti-reflective (AR) coating for Cu(In,Ga)Se2 (CIGS) solar cells is described and applied directly to fabricate devices. The model is based on transfer matrix theory with input from the accurate measurement of complex dielectric function spectra and thickness of each layer in the solar cell by spectroscopic ellipsometry. The AR coating thickness is optimized in real time to optically enhance device performance with varying thickness and properties of the constituent layers. Among the parameters studied, we notably demonstrate how changes in thickness of the CIGS absorber layer, buffer layers, and transparent contact layer of higher performance solar cells affect the optimized AR coating thickness. An increase in the device performance of up to 6% with the optimized AR layer is demonstrated, emphasizing the importance of designing the AR coating based on the properties of the device structure.

2021 ◽  
Author(s):  
Irfan Qasim ◽  
Owais Ahmad ◽  
Asim Rashid ◽  
Tashfeen Zehra ◽  
Muhammad Imran Malik ◽  
...  

Abstract Solar energy is found to be low cost and abundant of all available energy resources and needs exploration of highly efficient devices for global energy requirements. We have investigated methyl ammonium tin halide (CH3NH3SnI3)-based perovskite solar cells (PSCs) for optimized device performance using solar capacitance simulator SCAPS-1D software. This study is a step forward towards availability of stable and non-toxic solar cells. We explored all necessary parameters such as metal work functions, thickness of absorber and buffer layers, charge carrier’s mobility and defect density for improved device performance. Calculations revealed that for the best efficiency of device the maximum thickness of the perovskite absorber layer must be 4.2 μm. Furthermore, optimized thickness values of (ZnO=0.01 μm) as electron transport layer (ETL), GaAs as hole transport layer (HTL=3.02 μm) and (CdS=10 nm) and buffer layer have provided power conversion efficiency (PCE) of 23.53%. Variation of open circuit voltage (Voc), Short circuit current (Jsc), Fill Factor (FF%) and quantum efficiency against thickness of all layers in FTO/ZnO/CdS/CH3NH3SnI3/GaAs/Au compositions have been critically explored and reported. Interface defects and defect density in different inserted layers have also been reported in this study as they can play a crucial for the device performance. Insertion of ZnO layer and CdS buffer layers have shown improved device performance and PCE. Current investigations may prove to be useful for designing and fabrication of climate friendly, non-toxic and highly efficient solar cells.


Solar Energy ◽  
2021 ◽  
Vol 228 ◽  
pp. 45-52
Author(s):  
Chengwan Zhu ◽  
Wu Liu ◽  
Yaoyao Li ◽  
Xiaomin Huo ◽  
Haotian Li ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 286 ◽  
Author(s):  
Dandan Zhao ◽  
Yinghui Wu ◽  
Bao Tu ◽  
Guichuan Xing ◽  
Haifeng Li ◽  
...  

Although a compact holes-transport-layer (HTL) film has always been deemed mandatory for perovskite solar cells (PSCs), the impact their compactness on the device performance has rarely been studied in detail. In this work, based on a device structure of FTO/CIGS/perovskite/PCBM/ZrAcac/Ag, that effect was systematically investigated with respect to device performance along with photo-physics characterization tools. Depending on spin-coating speed, the grain size and coverage ratio of those CIGS films on FTO substrates can be tuned, and this can result in different hole transfer efficiencies at the anode interface. At a speed of 4000 r.p.m., the band level offset between the perovskite and CIGS modified FTO was reduced to a minimum of 0.02 eV, leading to the best device performance, with conversion efficiency of 15.16% and open-circuit voltage of 1.04 V, along with the suppression of hysteresis. We believe that the balance of grain size and coverage ratio of CIGS interlayers can be tuned to an optimal point in the competition between carrier transport and recombination at the interface based on the proposed mechanism. This paper definitely deepens our understanding of the hole transfer mechanism at the interface of PSC devices, and facilitates future design of high-performance devices.


MRS Advances ◽  
2019 ◽  
Vol 4 (16) ◽  
pp. 913-919 ◽  
Author(s):  
Fadhil K. Alfadhili ◽  
Adam B. Phillips ◽  
Geethika K. Liyanage ◽  
Jacob M. Gibbs ◽  
Manoj K. Jamarkattel ◽  
...  

ABSTRACTFormation of a low barrier back contact plays a critical role in improving the photoconversion efficiency of the CdTe solar cells. Incorporating a buffer layer to minimize the band bending at the back of the CdTe device can significantly lower the barrier for the hole current, improving open circuit voltage (VOC) and the fill factor. Over the past years, researchers have incorporated the both ZnTe and Te as buffer layers to improve CdTe device performance. Here we compare device performance using these two materials as buffer layers at the back of CdTe devices. We show that using Te in contact to CdTe results in higher performance than using ZnTe in contact to the CdTe. Low temperature current density-voltage measurements show that Te results is a lower barrier with CdTe than ZnTe, indicating that Te has better band alignment, resulting in less downward bending in the CdTe at the back interface, than ZnTe does.


2013 ◽  
Vol 3 (1) ◽  
pp. 461-466 ◽  
Author(s):  
Tokio Nakada ◽  
Taizo Kobayashi ◽  
Toyokazu Kumazawa ◽  
Hiroshi Yamaguchi

Nanomaterials ◽  
2019 ◽  
Vol 9 (4) ◽  
pp. 626 ◽  
Author(s):  
Bingchang Chen ◽  
Junhong Liu ◽  
Zexin Cai ◽  
Ao Xu ◽  
Xiaolin Liu ◽  
...  

CdTe nanocrystal (NC) solar cells have received much attention in recent years due to their low cost and environmentally friendly fabrication process. Nowadays, the back contact is still the key issue for further improving device performance. It is well known that, in the case of CdTe thin-film solar cells prepared with the close-spaced sublimation (CSS) method, Cu-doped CdTe can drastically decrease the series resistance of CdTe solar cells and result in high device performance. However, there are still few reports on solution-processed CdTe NC solar cells with Cu-doped back contact. In this work, ZnTe:Cu or Cu:Au back contact layer (buffer layer) was deposited on the CdTe NC thin film by thermal evaporation and devices with inverted structure of ITO/ZnO/CdSe/CdTe/ZnTe:Cu (or Cu)/Au were fabricated and investigated. It was found that, comparing to an Au or Cu:Au device, the incorporation of ZnTe:Cu as a back contact layer can improve the open circuit voltage (Voc) and fill factor (FF) due to an optimized band alignment, which results in enhanced power conversion efficiency (PCE). By carefully optimizing the treatment of the ZnTe:Cu film (altering the film thickness and annealing temperature), an excellent PCE of 6.38% was obtained, which showed a 21.06% improvement compared with a device without ZnTe:Cu layer (with a device structure of ITO/ZnO/CdSe/CdTe/Au).


Sign in / Sign up

Export Citation Format

Share Document