scholarly journals Joining of the Laminated Electrical Steels in Motor Manufacturing: A Review

Materials ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 4583 ◽  
Author(s):  
Cunjuan Xia ◽  
Hongze Wang ◽  
Yi Wu ◽  
Haowei Wang

In recent years, the motor has been increasingly used to replace the conventional gasoline engine for carbon emission reduction, and the high-performance motor is urgently required. The stator and rotor in a motor are made of hundreds of joined and laminated electrical steels. This paper covers the current research in joining the laminated electrical steels for the motor application, together with the critical assessment of our understanding. It includes the representative joining method, modeling of the joining process, microstructure of the weld zone, mechanical strength and magnetic properties. The gaps in the scientific understanding, and the research needs for the expansion of joining laminated electrical steels, are provided.

Alloy Digest ◽  
1999 ◽  
Vol 48 (1) ◽  

Abstract Armco DI-MAX nonoriented electrical steels have practically identical magnetic properties in any direction of magnetism in the plane of the material. They have superior permeability at high inductions, low average core loss, good gage uniformity, excellent flatness, and a high stacking factor. This datasheet provides information on composition, physical properties, hardness, and tensile properties. Filing Code: FE-88. Producer or source: Armco Inc., Specialty Steels Division. Originally published April 1989, revised January 1999.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1810
Author(s):  
Kaitong Xu ◽  
Haibo Kang ◽  
Wei Wang ◽  
Ping Jiang ◽  
Na Li

At present, the issue of carbon emissions from buildings has become a hot topic, and carbon emission reduction is also becoming a political and economic contest for countries. As a result, the government and researchers have gradually begun to attach great importance to the industrialization of low-carbon and energy-saving buildings. The rise of prefabricated buildings has promoted a major transformation of the construction methods in the construction industry, which is conducive to reducing the consumption of resources and energy, and of great significance in promoting the low-carbon emission reduction of industrial buildings. This article mainly studies the calculation model for carbon emissions of the three-stage life cycle of component production, logistics transportation, and on-site installation in the whole construction process of composite beams for prefabricated buildings. The construction of CG-2 composite beams in Fujian province, China, was taken as the example. Based on the life cycle assessment method, carbon emissions from the actual construction process of composite beams were evaluated, and that generated by the composite beam components during the transportation stage by using diesel, gasoline, and electric energy consumption methods were compared in detail. The results show that (1) the carbon emissions generated by composite beams during the production stage were relatively high, accounting for 80.8% of the total carbon emissions, while during the transport stage and installation stage, they only accounted for 7.6% and 11.6%, respectively; and (2) during the transportation stage with three different energy-consuming trucks, the carbon emissions from diesel fuel trucks were higher, reaching 186.05 kg, followed by gasoline trucks, which generated about 115.68 kg; electric trucks produced the lowest, only 12.24 kg.


Author(s):  
H. Helbling ◽  
A. Benabou ◽  
A. Van Gorp ◽  
A. Tounzi ◽  
M. El Youssef ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document