scholarly journals The Multi-Stage Drawing Process of Zinc-Coated Medium-Carbon Steel Wires in Conventional and Hydrodynamic Dies

Materials ◽  
2020 ◽  
Vol 13 (21) ◽  
pp. 4871
Author(s):  
Maciej Suliga ◽  
Radosław Wartacz ◽  
Marek Hawryluk

This paper discusses experimental studies aiming to determine the effect of the drawing method on the lubrication conditions, zinc coating mass and mechanical properties of medium-carbon steel wires. The test material was 5.5 mm-diameter galvanized wire rod which was drawn into 2.2 mm-diameter wire in seven draws at a drawing speed of 5, 10, 15, 20 and 20 m/s, respectively. Conventional and hydrodynamic dies with a working portion angle of α = 5° were used for the drawing process. It has been shown that using hydrodynamic dies in the process of multi-stage drawing of zinc-coated wire improves the lubrication conditions, which leads to a reduction in friction at the wire/die interface. As a consequence, wires drawn hydrodynamically, as compared to wires drawn conventionally, are distinguished by a thicker zinc coating and better mechanical and technological properties.

2021 ◽  
Vol 406 ◽  
pp. 505-510
Author(s):  
Mohamed Chaouki Nebbar ◽  
Mosbah Zidani ◽  
Salim Messaoudi ◽  
Taher Abid ◽  
Ahmed Kisrane-Bouzidi ◽  
...  

This study was mainly oriented on the evolution of the crystallographic texture as a function of the deformation resulting from the industrial wire drawing process. This, in fact, will make it possible to establish a relationship between the microstructure and the crystallographic texture in the medium carbon steel wires obtained by industrial wire drawing process and used in the manufacture of spring mattresses in order to minimize the loss of material and to satisfy the users of this product.During this study, a medium-carbon steel wires was characterized by two analytical techniques. The scanning electron microscopy (SEM) to monitor the microstructure evolution and the electron backscatter diffraction (EBSD) for the crystallographic texture analysis. The EBSD results are processed with OIM (Orientation Imaging Microscopy) analysis software.


2015 ◽  
Vol 216 ◽  
pp. 348-356 ◽  
Author(s):  
Ho Seon Joo ◽  
Sun Kwang Hwang ◽  
Hyun Moo Baek ◽  
Yong-Taek Im ◽  
Il-Heon Son ◽  
...  

2017 ◽  
Vol 62 (2) ◽  
pp. 483-487 ◽  
Author(s):  
M. Suliga ◽  
R. Wartacz ◽  
J. Michalczyk

Abstract The paper contains the theoretical and experimental analysis of the impact of the drawing angle on the drawing process and the properties of low carbon steel wires. A multi-stage drawing wire rod with a diameter of 5.5 mm on a wire with a diameter of 1.0 mm has been carried out in two stages. The first one consisted of preliminary drawing wire rod for the wire with a diameter of 2.2 mm which was next subjected to the drawing process at a speed of 25 m/sec at the final wire with a diameter of 1.0 mm. The wires were drawn in conventional dies with drawing angle α = 3, 4, 5, 6, 7 degrees. For the wires drawn in respective variants, the investigation of the mechanical properties was performed and the amount of lubricant on the surface of steel wires was determined. Numerical analysis of the process of drawing in the Drawing 2D complemented the experimental studies. It has been shown that when drawing at high speeds, properly chosen the value of the angle of the working part of the die can improve the lubrication conditions and mechanical properties of steel wires.


2014 ◽  
Vol 81 ◽  
pp. 682-687 ◽  
Author(s):  
Ho Seon Joo ◽  
Sun Kwang Hwang ◽  
Hyun Moo Baek ◽  
Yong-Taek Im ◽  
Il-Heon Son ◽  
...  

2020 ◽  
Vol 9 (3) ◽  
pp. 323-336
Author(s):  
Irene Calliari ◽  
Marina Polyakova ◽  
Alexandr Gulin ◽  
Mattia Lago ◽  
Claudio Gennari ◽  
...  

2018 ◽  
Vol 18 (1) ◽  
pp. 125-135
Author(s):  
Sattar H A Alfatlawi

One of ways to improve properties of materials without changing the product shape toobtain the desired engineering applications is heating and cooling under effect of controlledsequence of heat treatment. The main aim of this study was to investigate the effect ofheating and cooling on the surface roughness, microstructure and some selected propertiessuch as the hardness and impact strength of Medium Carbon Steel which treated at differenttypes of heat treatment processes. Heat treatment achieved in this work was respectively,heating, quenching and tempering. The specimens were heated to 850°C and left for 45minutes inside the furnace as a holding time at that temperature, then quenching process wasperformed in four types of quenching media (still air, cold water (2°C), oil and polymersolution), respectively. Thereafter, the samples were tempered at 200°C, 400°C, and 600°Cwith one hour as a soaking time for each temperature, then were all cooled by still air. Whenthe heat treatment process was completed, the surface roughness, hardness, impact strengthand microstructure tests were performed. The results showed a change and clearimprovement of surface roughness, mechanical properties and microstructure afterquenching was achieved, as well as the change that took place due to the increasingtoughness and ductility by reducing of brittleness of samples.


Alloy Digest ◽  
1972 ◽  
Vol 21 (3) ◽  

Abstract AISI 1025 is a low-to-medium-carbon steel used in the hot-worked, cold-worked, normalized or water-quenched-and-tempered condition for general-purpose construction and engineering. It is also used for case-hardened components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: CS-47. Producer or source: Carbon and alloy steel mills.


Sign in / Sign up

Export Citation Format

Share Document