scholarly journals Atomic Force Microscopy Investigation of the Interactions between the MCM Helicase and DNA

Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 687
Author(s):  
Amna Abdalla Mohammed Khalid ◽  
Pietro Parisse ◽  
Barbara Medagli ◽  
Silvia Onesti ◽  
Loredana Casalis

The MCM (minichromosome maintenance) protein complex forms an hexameric ring and has a key role in the replication machinery of Eukaryotes and Archaea, where it functions as the replicative helicase opening up the DNA double helix ahead of the polymerases. Here, we present a study of the interaction between DNA and the archaeal MCM complex from Methanothermobacter thermautotrophicus by means of atomic force microscopy (AFM) single molecule imaging. We first optimized the protocol (surface treatment and buffer conditions) to obtain AFM images of surface-equilibrated DNA molecules before and after the interaction with the protein complex. We discriminated between two modes of interaction, one in which the protein induces a sharp bend in the DNA, and one where there is no bending. We found that the presence of the MCM complex also affects the DNA contour length. A possible interpretation of the observed behavior is that in one case the hexameric ring encircles the dsDNA, while in the other the nucleic acid wraps on the outside of the ring, undergoing a change of direction. We confirmed this topographical assignment by testing two mutants, one affecting the N-terminal β-hairpins projecting towards the central channel, and thus preventing DNA loading, the other lacking an external subdomain and thus preventing wrapping. The statistical analysis of the distribution of the protein complexes between the two modes, together with the dissection of the changes of DNA contour length and binding angle upon interaction, for the wild type and the two mutants, is consistent with the hypothesis. We discuss the results in view of the various modes of nucleic acid interactions that have been proposed for both archaeal and eukaryotic MCM complexes.

2013 ◽  
pp. 102-112
Author(s):  
Memed Duman ◽  
Andreas Ebner ◽  
Christian Rankl ◽  
Jilin Tang ◽  
Lilia A. Chtcheglova ◽  
...  

Biochemistry ◽  
2007 ◽  
Vol 46 (10) ◽  
pp. 2797-2804 ◽  
Author(s):  
Theeraporn Puntheeranurak ◽  
Barbara Wimmer ◽  
Francisco Castaneda ◽  
Hermann J. Gruber ◽  
Peter Hinterdorfer ◽  
...  

2004 ◽  
Vol 811 ◽  
Author(s):  
J. Pétry ◽  
W. Vandervorst ◽  
O. Richard ◽  
T. Conard ◽  
P. DeWolf ◽  
...  

ABSTRACTIn the path to the introduction of high-k dielectric into IC components, a large number of challenges have still to be solved. Some of the major issues concern the low mobility of carriers and the reliability of the devices. Trapped charges in the stack have been identified as being the cause of these issues. With this in mind, we used Conducting Atomic Force Microscopy, combined with physical analysis to understand the nature of these charges. In this contribution, we have studied the uniformity of thin HfO2 layers, with and without anneal. The Conducting Atomic Force microscopy measurements show spots of higher conductivity. Recording local IV's in those ‘weak’ spots suggests that they consist of positive charge. On the other hand, XPS and ToFSIMS analysis show a diffusion of the interfacial SiO2 upwards into the high-k layer. Finally, the comparison of samples with differing high-k material and crystallinity indicates a strong correlation between the weak spots and the presence of silicon in the film.


ACS Nano ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. 198-207 ◽  
Author(s):  
Robert Walder ◽  
William J. Van Patten ◽  
Ayush Adhikari ◽  
Thomas T. Perkins

2004 ◽  
Vol 116 (31) ◽  
pp. 4137-4141 ◽  
Author(s):  
Jordi Hernando ◽  
Pieter A. J. de Witte ◽  
Erik M. H.P van Dijk ◽  
Jeroen Korterik ◽  
Roeland J. M. Nolte ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document