scholarly journals Recent Advancements in Nanoparticle-Based Optical Biosensors for Circulating Cancer Biomarkers

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1339
Author(s):  
Chaima Amri ◽  
Arvind Kumar Shukla ◽  
Jin-Ho Lee

The effectiveness of cancer treatment strongly depends on the early detection of the disease. Currently, the most common diagnostic method, tissue biopsy, takes time and can be damaging to the patient. Circulating cancer biomarkers such as circulating tumor DNA, micro-RNA (miRNA), tumor proteins, exosomes, and circulating tumor cells have repeatedly demonstrated their viability as targets for minimally invasive cancer detection through liquid biopsies. However, among other things, achieving a great sensitivity of detection is still challenging due to the very low concentration of biomarkers in fluid samples. This review will discuss how the recent advances in nanoparticle-based biosensors are overcoming these practical difficulties. This report will be focusing mainly on optical transduction mechanisms of metal nanoparticles (M-NPs), quantum dots (QDs), and upconversion nanoparticles (UCNPs).

2020 ◽  
Vol 9 (5) ◽  
pp. 1541 ◽  
Author(s):  
Tudor Mocan ◽  
André L. Simão ◽  
Rui E. Castro ◽  
Cecília M. P. Rodrigues ◽  
Artur Słomka ◽  
...  

Hepatocellular carcinoma (HCC) represents the sixth most common cancer worldwide and the third most common cause of cancer-related death. One of the major problems faced by researchers and clinicians in this area is the lack of reliable disease biomarkers, which would allow for an earlier diagnosis, follow-up or prediction of treatment response, among others. In this regard, the “HCC circulome”, defined as the pool of circulating molecules in the bloodstream derived from the primary tumor, represents an appealing target, the so called liquid biopsy. Such molecules encompass circulating tumor proteins, circulating tumor cells (CTCs), extracellular vesicles (EVs), tumor-educated platelets (TEPs), and circulating tumor nucleic acids, namely circulating tumor DNA (ctDNA) and circulating tumor RNA (ctRNA). In this article, we summarize recent findings highlighting the promising role of liquid biopsies as novel potential biomarkers in HCC, emphasizing on its clinical performance.


2020 ◽  
Vol 27 (9) ◽  
pp. 3259-3267
Author(s):  
Joel M. Baumgartner ◽  
Paul Riviere ◽  
Richard B. Lanman ◽  
Kaitlyn J. Kelly ◽  
Jula Veerapong ◽  
...  

Apmis ◽  
2019 ◽  
Vol 127 (5) ◽  
pp. 329-336 ◽  
Author(s):  
Lise Barlebo Ahlborn ◽  
Olga Østrup

2020 ◽  
Vol 5 (6) ◽  
pp. 1372-1377
Author(s):  
Clare Fiala ◽  
Eleftherios P Diamandis

Abstract Early detection of cancer has been a major research focus for almost a century. Current methods for early cancer detection suffer from suboptimal sensitivity and specificity, especially when used for population screening. For most major cancers, including breast, prostate, lung, ovarian, and pancreatic cancer, population screening is still controversial or is not recommended by expert bodies. Circulating tumor DNA (ctDNA) is an exciting new cancer biomarker with potential applicability to all cancer types. Recent investigations have shown that genetic alterations or epigenetic modifications in ctDNA could be used for cancer detection with a liquid biopsy (i.e., a tube of blood). Tests based on ctDNA have attracted considerable attention for various applications, such as patient management, prognosis, early diagnosis, and population screening. Recently, new biotechnology companies were founded, with the goal of revolutionizing early cancer detection by using ctDNA. We previously examined this technology, as published by various academic laboratories and of one leading company, Grail, and drew attention to potential obstacles. After 3 years of intense development, this technology seems to have made some progress. Here, we will analyze the latest clinical data presented by Grail in October 2019, during the inaugural American Society of Clinical Oncology (ASCO) 2019 Breakthrough Conference. Despite considerable technical improvements, it seems that the sensitivity and specificity of the Grail test as a pan-cancer screening tool are still too low for clinical use. The prospects that this test could be further improved are also discussed.


2020 ◽  
Vol 66 (4) ◽  
pp. 606-613 ◽  
Author(s):  
Amanda Bortolini Silveira ◽  
François-Clément Bidard ◽  
Amélie Kasperek ◽  
Samia Melaabi ◽  
Marie-Laure Tanguy ◽  
...  

Abstract Background Microsatellite instability (MSI) has recently emerged as a predictive pan-tumor biomarker of immunotherapy efficacy, stimulating the development of diagnostic tools compatible with large-scale screening of patients. In this context, noninvasive detection of MSI from circulating tumor DNA stands as a promising diagnostic and posttreatment monitoring tool. Methods We developed drop-off droplet-digital PCR (ddPCR) assays targeting BAT-26, activin A receptor type 2A (ACVR2A), and defensin beta 105A/B (DEFB105A/B) microsatellite markers. Performances of the assays were measured on reconstitution experiments of various mutant allelic fractions, on 185 tumor samples with known MSI status, and on 72 blood samples collected from 42 patients with advanced colorectal or endometrial cancers before and/or during therapy. Results The 3 ddPCR assays reached analytical sensitivity <0.1% variant allelic frequency and could reliably detect and quantify MSI in both tumor and body fluid samples. High concordance between MSI status determination by the three-marker ddPCR test and the reference pentaplex method were observed (100% for colorectal tumors and 93% for other tumor types). Moreover, the 3 assays showed correlations with r ≥ 0.99 with other circulating tumor DNA markers and their dynamic during treatment correlated well with clinical response. Conclusions This innovative approach for MSI detection provides a noninvasive, cost-effective, and fast diagnostic tool, well suited for large-scale screening of patients that may benefit from immunotherapy agents, as well as for monitoring treatment responses.


2020 ◽  
Vol 13 (2) ◽  
pp. 941-947
Author(s):  
Pashtoon Murtaza Kasi

Cholangiocarcinoma is a very heterogenous cancer and “target-rich” disease. While the current classifications are based on the anatomic location of these tumors (intrahepatic cholangiocarcinoma, extrahepatic cholangiocarcinoma, and gallbladder cancer), tumors within and across these disease groups have unique and often mutually exclusive molecular aberrations. Amongst these, fibroblast growth factor receptor 2 (FGFR2) fusion is one of the first amongst the list of “actionable” targets for which the US Food and Drug Administration just approved pemigatinib. This is for patients with cholangiocarcinoma who have received prior treatment and have FGFR2 fusion or another rearrangement. This was based on the results from the clinical trial FIGHT-202 (NCT02924376). At present, several FGFR inhibitors are actively being tested in several agnostic and tumor-specific clinical trials. Patients also have had the opportunity of getting access to some of these oral drugs through compassionate use programs. As a consequence, these patients have more options in addition to chemotherapy. These all tend to have “good” initial responses and improvement in performance status and later “acquired” mechanisms of resistance. The latter tend to often be gatekeeper mutations that bypass the inhibitory effects of these selective FGFR inhibitors and/or cause steric hindrance. These tumors, therefore, evolve on selective pressure (temporal heterogeneity). This can be captured noninvasively using “liquid biopsies” (circulating tumor DNA testing). Here we present cases (several years into treatment on average) showing the feasibility of using liquid biopsies (ctDNA testing) as well as the gain and later potential loss of intratumoral and temporal heterogeneity exhibited under selective pressure of these novel FGFR inhibitors, chemotherapy and/or locoregional therapies. Despite limitations in sample size and provider bias, it is important to identify these “exceptional responders” and/or better outcomes that may be inherent to the biology of FGFR fusion-positive cholangiocarcinomas.


2017 ◽  
Vol 15 (2) ◽  
pp. 59-72 ◽  
Author(s):  
Xiao Han ◽  
Junyun Wang ◽  
Yingli Sun

Sign in / Sign up

Export Citation Format

Share Document