scholarly journals The 3D-Printed Honeycomb Metamaterials Tubes with Tunable Negative Poisson’s Ratio for High-Performance Static and Dynamic Mechanical Properties

Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1353
Author(s):  
Chunxia Guo ◽  
Dong Zhao ◽  
Zhanli Liu ◽  
Qian Ding ◽  
Haoqiang Gao ◽  
...  

The synthesized understanding of the mechanical properties of negative Poisson’s ratio (NPR) convex–concave honeycomb tubes (CCHTs) under quasi-static and dynamic compression loads is of great significance for their multifunctional applications in mechanical, aerospace, aircraft, and biomedical fields. In this paper, the quasi-static and dynamic compression tests of three kinds of 3D-printed NPR convex–concave honeycomb tubes are carried out. The sinusoidal honeycomb wall with equal mass is used to replace the cell wall structure of the conventional square honeycomb tube (CSHT). The influence of geometric morphology on the elastic modulus, peak force, energy absorption, and damage mode of the tube was discussed. The experimental results show that the NPR, peak force, failure mode, and energy absorption of CCHTs can be adjusted by changing the geometric topology of the sinusoidal element. Through the reasonable design of NPR, compared with the equal mass CSHTs, CCHTs could have the comprehensive advantages of relatively high stiffness and strength, enhanced energy absorption, and damage resistance. The results of this paper are expected to be meaningful for the optimization design of tubular structures widely used in mechanical, aerospace, vehicle, biomedical engineering, etc.

2021 ◽  
Author(s):  
Yonghui Wang ◽  
Qiang He ◽  
Yu Chen ◽  
Hang Gu ◽  
Honggen Zhou

Abstract In order to seek higher crashworthiness and energy absorption capacity, based on biological inspiration, a novel bio-inspired re-entrant honeycomb (BRH) structure with negative Poisson's ratio is designed by selecting lotus leaf vein as biological prototype. The numerical simulation model is established by the nonlinear dynamics software ABAQUS and further compared with the available reference results to verify the feasibility. The dynamic compression behavior and energy absorption capacity of two types of BRH (BRH-Ⅰ and BRH-Ⅱ) are firstly compared with conventional re-entrant honeycomb (RH). The simulation results show that BRH have better mechanical properties and energy absorption characteristics. Then, the crushing behavior of BRH-Ⅱ under different impact velocities are systematically studied. Three typical deformation modes of BRH-Ⅱ are observed through the analysis of deformation profile. The quasi-static plateau stress is closely related to the cellular structure. Based on one-dimensional shock theory, the empirical equations of dynamic plateau stress for BRH-Ⅱ with different relative densities are given by using least-square fitting. In addition, the effects of impact velocity and relative density on plateau stress and energy absorption behavior are also studied. The results show that the energy absorption capacity of BRH-Ⅱ is increased nearly six times compared with RH at the same impact velocity.


Materials ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 1869 ◽  
Author(s):  
Shaohua Cui ◽  
Baoming Gong ◽  
Qian Ding ◽  
Yongtao Sun ◽  
Fuguang Ren ◽  
...  

Systematic and deep understanding of mechanical properties of the negative Poisson’s ratio convex-concave foams plays a very important role for their practical engineering applications. However, in the open literature, only a negative Poisson’s ratio effect of the metamaterials convex-concave foams is simply mentioned. In this paper, through the experimental and finite element methods, effects of geometrical morphology on elastic moduli, energy absorption, and damage properties of the convex-concave foams are systematically studied. Results show that negative Poisson’s ratio, energy absorption, and damage properties of the convex-concave foams could be tuned simultaneously through adjusting the chord height to span ratio of the sine-shaped cell edges. By the rational design of the negative Poisson’s ratio, when compared to the conventional open-cell foams of equal mass, convex-concave foams could have the combined advantages of relative high stiffness and strength, enhanced energy absorption and damage resistance. The research of this paper provides theoretical foundations for optimization design of the mechanical properties of the convex-concave foams and thus could facilitate their practical applications in the engineering fields.


2011 ◽  
Vol 148-149 ◽  
pp. 992-995 ◽  
Author(s):  
Shu Yang ◽  
Chang Qi ◽  
Dong Ming Guo ◽  
Dong Wang

In the present paper, we have investigated a negative Poisson’s ratio structure with regular re-entrant cell shape to study its structural response under crush by rigid wall. Firstly, we created the geometry of cellular material in HYPERMESH. The developed geometrical model is imported into LS-DYNA. Then we use commercially available nonlinear explicit finite element code LS-DYNA to simulate the NPR material under uniformly distributed load. The deformation modes and energy absorption characteristics of NPR material were analyzed. Numerical results indicate that this NPR material have good ability of energy absorption.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Kun Yuan ◽  
Meng-Yang Li ◽  
Yan-Zhi Liu ◽  
Ren-Zhong Li

The intrinsic negative Poisson’s ratio effect in 2-dimensional nanomaterials have attracted a lot of research interests due to its superior mechanical properties, and new mechanisms have emerged in the nanoscale. In this paper, we designed a novel graphyne-like two-dimensional carbon nanostructure with a “butterfly” shape (GL-2D-1) and its configuration isomer with a “herring-bone” form (GL-2D-2) by means of density functional theoretical calculation and predicted their in-plane negative Poisson’s ratio effect and other mechanical properties. Both GL-2D-1 and GL-2D-2 present a significant negative Poisson’s ratio effect under different specific strains conditions. By contrast, GL-2D-2 presents a much stronger negative Poisson’s ratio effect and mechanical stability than does GL-2D-1. It is hoped that this work could be a useful structural design strategy for the development of the 2D carbon nanostructure with the intrinsic negative Poisson’s ratio.


Author(s):  
ChunYan Wang ◽  
SongChun Zou ◽  
WanZhong Zhao

The crash box can absorb energy from the beam as much as possible, so as to reduce the collision damage to the front part of the car body and protect the safety of passengers. This work proposes a novel crash box filled with a three-dimensional negative Poisson’s ratio (NPR) inner core based on an inner hexagonal cellular structure. In order to optimize and improve the crash box’s energy absorption performance, the multi-objective optimization model of the NPR crash box is established, which combines the optimal Latin hypercube design method and response surface methodology. Then, the microstructure parameters are further optimized by the multi-objective particle swarm optimization algorithm to obtain an excellent energy absorption effect. The simulation results show that the proposed NPR crash box can generate smooth and controllable deformation to absorb the total energy, and it can further enhance the crashworthiness through the designed optimization algorithm.


Sign in / Sign up

Export Citation Format

Share Document